22 research outputs found

    On the sensitivity of the HAWC observatory to gamma-ray bursts

    Full text link
    We present the sensitivity of HAWC to Gamma Ray Bursts (GRBs). HAWC is a very high-energy gamma-ray observatory currently under construction in Mexico at an altitude of 4100 m. It will observe atmospheric air showers via the water Cherenkov method. HAWC will consist of 300 large water tanks instrumented with 4 photomultipliers each. HAWC has two data acquisition (DAQ) systems. The main DAQ system reads out coincident signals in the tanks and reconstructs the direction and energy of individual atmospheric showers. The scaler DAQ counts the hits in each photomultiplier tube (PMT) in the detector and searches for a statistical excess over the noise of all PMTs. We show that HAWC has a realistic opportunity to observe the high-energy power law components of GRBs that extend at least up to 30 GeV, as it has been observed by Fermi LAT. The two DAQ systems have an energy threshold that is low enough to observe events similar to GRB 090510 and GRB 090902b with the characteristics observed by Fermi LAT. HAWC will provide information about the high-energy spectra of GRBs which in turn could help to understanding about e-pair attenuation in GRB jets, extragalactic background light absorption, as well as establishing the highest energy to which GRBs accelerate particles

    INFAMY: An infinite-state Markov model checker

    No full text
    Abstract. The design of complex concurrent systems often involves intricate performance and dependability considerations. Continuous-time Markov chains (CTMCs) are a widely used modeling formalism, where performance and dependability properties are analyzable by model checking. We present INFAMY, a model checker for arbitrarily structured infinite-state CTMCs. It checks probabilistic timing properties expressible in continuous stochastic logic (CSL). Conventional model checkers explore the given model exhaustively, which is often costly, due to state explosion, and impossible if the model is infinite. INFAMY only explores the model up to a finite depth, with the depth bound being computed on-the-fly. The computation of depth bounds is configurable to adapt to the characteristics of different classes of models. 1 Introducing INFAMY Continuous-time Markov chains (CTMCs) are widely used in performance and dependability analysis and biological modeling. Properties are typically specified in continuous stochastic logic (CSL) [1], a logic inspired by CTL. In CSL, the until operator is equipped with a time interval to express properties such as: “The probability to reach a goal within 2 hours while maintaining a probability of at least 0.5 of communicating ( ( periodically (every five minutes) with a base station, is at least 0.9 ” via P≥0.9 P≥0.5✸≤5communicate) U ≤120 goal). CSL model checking amounts to analysis of the transient (time-dependent) probability vectors [1], typically carried out by uniformization, where the transient probability is expressed by a weighted infinite sum (weights are given by a Poisson process). The standard methodology in CSL model checking is to truncate the infinite sum up to some pre-specified accuracy [2]. Outside the model checking arena, ideas have been developed [3,4,5] which not only truncate the infinite sum, but also the matrix representing the system, which admits transient analysis of CTMCs with large or even infinite state spaces, provided they are given implicitly in a This work is supported by the NWO-DFG bilateral project VOSS, by the DFG a
    corecore