1,094 research outputs found

    Fluorine in the solar neighborhood - is it all produced in AGB-stars?

    Full text link
    The origin of 'cosmic' fluorine is uncertain, but there are three proposed production sites/mechanisms: AGB stars, Μ\nu nucleosynthesis in Type II supernovae, and/or the winds of Wolf-Rayet stars. The relative importance of these production sites has not been established even for the solar neighborhood, leading to uncertainties in stellar evolution models of these stars as well as uncertainties in the chemical evolution models of stellar populations. We determine the fluorine and oxygen abundances in seven bright, nearby giants with well-determined stellar parameters. We use the 2.3 Ό\mum vibrational-rotational HF line and explore a pure rotational HF line at 12.2 Ό\mum. The latter has never been used before for an abundance analysis. To be able to do this we have calculated a line list for pure rotational HF lines. We find that the abundances derived from the two diagnostics agree. Our derived abundances are well reproduced by chemical evolution models only including fluorine production in AGB-stars and therefore we draw the conclusion that this might be the main production site of fluorine in the solar neighborhood. Furthermore, we highlight the advantages of using the 12 Ό\mum HF lines to determine the possible contribution of the Μ\nu-process to the fluorine budget at low metallicities where the difference between models including and excluding this process is dramatic

    GaAs interfacial self-cleaning by atomic layer deposition

    Get PDF
    The reduction and removal of surface oxides from GaAs substrates by atomic layer deposition (ALD) of Al2O3 and HfO2 are studied using in situ monochromatic x-ray photoelectron spectroscopy. Using the combination of in situ deposition and analysis techniques, the interfacial "self-cleaning" is shown to be oxidation state dependent as well as metal organic precursor dependent. Thermodynamics, charge balance, and oxygen coordination drive the removal of certain species of surface oxides while allowing others to remain. These factors suggest proper selection of surface treatments and ALD precursors can result in selective interfacial bonding arrangements

    Frequency dispersion reduction and bond conversion on n-type GaAs by in situ surface oxide removal and passivation

    Get PDF
    The method of surface preparation on n-type GaAs, even with the presence of an amorphous-Si interfacial passivation layer, is shown to be a critical step in the removal of accumulation capacitance frequency dispersion. In situ deposition and analysis techniques were used to study different surface preparations, including NH4OH, Si-flux, and atomic hydrogen exposures, as well as Si passivation depositions prior to in situ atomic layer deposition of Al2O3. As–O bonding was removed and a bond conversion process with Si deposition is observed. The accumulation capacitance frequency dispersion was removed only when a Si interlayer and a specific surface clean were combined

    The Evolution of Oxygen and Magnesium in the Bulge and Disk of the Milky Way

    Full text link
    We show that the Galactic bulge and disk share a similar, strong, decline in [O/Mg] ratio with [Mg/H]. The similarity of the [O/Mg] trend in these two, markedly different, populations suggests a metallicity-dependent modulation of the stellar yields from massive stars, by mass loss from winds, and related to the Wolf-Rayet phenomenon, as proposed by McWilliam & Rich (2004). We have modified existing models for the chemical evolution of the Galactic bulge and the solar neighborhood with the inclusion of metallicity-dependent oxygen yields from theoretical predictions for massive stars that include mass loss by stellar winds. Our results significantly improve the agreement between predicted and observed [O/Mg] ratios in the bulge and disk above solar metallicity; however, a small zero-point normalization problem remains to be resolved. The zero-point shift indicates that either the semi-empirical yields of Francois et al. (2004) need adjustment, or that the bulge IMF is not quite as flat as found by Ballero et al. (2007); the former explanation is preferred. Our result removes a previous inconsistency between the interpretation of [O/Fe] and [Mg/Fe] ratios in the bulge, and confirms the conclusion that the bulge formed more rapidly than the disk, based on the over-abundances of elements produced by massive stars. We also provide an explanation for the long-standing difference between [Mg/Fe] and [O/Fe] trends among disk stars more metal-rich than the sun.Comment: 22 pages including 5 figures. Submitted to the Astronomical Journa

    CO observations of symbiotic stellar systems

    Full text link
    We have performed mm-wave observations with the IRAM 30m telescope of the 12CO J=2-1 and J=1-0, 13CO J=2-1 and J=1-0, and SiO J=5-4 transitions in the symbiotic stars R Aqr, CH Cyg, and HM Sge. The data were analyzed by means of a simple analytical description of the general properties of molecular emission from the inner shells around the cool star. Numerical calculations of the expected line profiles, taking into account the level population and radiative transfer under such conditions, were also performed. Weak emission of 12CO J=2-1 and J=1-0 was detected in R Aqr and CH Cyg; a good line profile of 12CO J=2-1 in R Aqr was obtained. The intensities and profile shapes of the detected lines are compatible with emission coming from a very small shell around the Mira-type star, with a radius comparable to or slightly smaller than the distance to the hot dwarf companion, 1014^{14} - 2 1014^{14} cm. We argue that other possible explanations are improbable. This region probably shows properties similar to those characteristic of the inner shells around standard AGB stars: outwards expansion at about 5 - 25 km/s, with a significant acceleration of the gas, temperatures decreasing with radius between about 1000 and 500 K, and densities ~ 109^9 - 3 108^8 cm−3^{-3}. Our model calculations are able to explain the asymmetric line shape observed in 12CO J=2-1 from R Aqr, in which the relatively weaker red part of the profile would result from selfabsorption by the outer layers (in the presence of a velocity increase and a temperature decrease with radius). The mass-loss rates are somewhat larger than in standard AGB stars, as often happens for symbiotic systems. In R Aqr, we find that the total mass of the CO emitting region is ~ 2 - 3 10−5^{-5} Mo, corresponding to M' ~ 5 10−6^{-6} - 10−5^{-5} Mo/yr, and compatible with results obtained from dust emission. Taking into account other existing data on molecular emission, we suggest that the small extent of the molecule-rich gas in symbiotic systems is mainly due to molecule photodissociation by the radiation of the hot dwarf star.Comment: 11 pages, 4 figure

    Lessons from a Minimal Genome: What Are the Essential Organizing Principles of a Cell Built from Scratch?

    Full text link
    One of the primary challenges facing synthetic biology is reconstituting a living system from its component parts. A particularly difficult landmark is reconstituting a self‐organizing system that can undergo autonomous chromosome compaction, segregation, and cell division. Here, we discuss how the syn3.0 minimal genome can inform us of the core self‐organizing principles of a living cell and how these self‐organizing processes can be built from the bottom up. The review underscores the importance of fundamental biology in rebuilding life from its molecular constituents.A primary challenge in synthetic biology is reconstituting self‐organizing systems that can undergo autonomous chromosome compaction, segregation, and cell division. Here, we discuss how the syn3.0 minimal genome sheds light on the core self‐organizing principles of living cells and how these self‐organizing processes can be built from the bottom up.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152011/1/cbic201900249.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152011/2/cbic201900249_am.pd

    The stellar population histories of early-type galaxies. III. The Coma Cluster

    Get PDF
    We present stellar population parameters of twelve early-type galaxies (ETGs) in the Coma Cluster based on spectra obtained using the Low Resolution Imaging Spectrograph on the Keck II Telescope. Our data allow us to examine in detail the zero-point and scatter in their stellar population properties. Our ETGs have SSP-equivalent ages of on average 5-8 Gyr with the models used here, with the oldest galaxies having ages of ~10 Gyr old. This average age is identical to the mean age of field ETGs. Our ETGs span a large range in velocity dispersion but are consistent with being drawn from a population with a single age. Specifically, ten of the twelve ETGs are consistent within their formal errors of having the same age, 5.2+/-0.2 Gyr, over a factor of more than 750 in mass. We therefore find no evidence for downsizing of the stellar populations of ETGs in the core of the Coma Cluster. We suggest that Coma Cluster ETGs may have formed the majority of their mass at high redshifts but suffered small but detectable star formation events at z~0.1-0.3. Previous detections of 'downsizing' from stellar populations of local ETGs may not reflect the same downsizing seen in lookback studies of RSGs, as the young ages of the local ETGs represent only a small fraction of their total masses. (abridged)Comment: 49 pages, 20 figures (19 EPS, 1 JPEG). MNRAS, in press. For version with full resolution of Fig. 1 see http://www.astro.rug.nl/~sctrager/coma.pdf; for Table 2, see http://www.astro.rug.nl/~sctrager/coma_table2.pdf; for Table B3, see http://www.astro.rug.nl/~sctrager/coma_tableB3.pd

    Towards More Precise Survey Photometry for PanSTARRS and LSST: Measuring Directly the Optical Transmission Spectrum of the Atmosphere

    Full text link
    Motivated by the recognition that variation in the optical transmission of the atmosphere is probably the main limitation to the precision of ground-based CCD measurements of celestial fluxes, we review the physical processes that attenuate the passage of light through the Earth's atmosphere. The next generation of astronomical surveys, such as PanSTARRS and LSST, will greatly benefit from dedicated apparatus to obtain atmospheric transmission data that can be associated with each survey image. We review and compare various approaches to this measurement problem, including photometry, spectroscopy, and LIDAR. In conjunction with careful measurements of instrumental throughput, atmospheric transmission measurements should allow next-generation imaging surveys to produce photometry of unprecedented precision. Our primary concerns are the real-time determination of aerosol scattering and absorption by water along the line of sight, both of which can vary over the course of a night's observations.Comment: 41 pages, 14 figures. Accepted PAS

    Near-Infrared Classification Spectroscopy: H-band Spectra of Fundamental MK Standards

    Get PDF
    We present a catalogue of H-band spectra for 85 stars of approximately solar abundance observed at a resolving power of 3000 with the KPNO Mayall 4m FTS. The atlas covers spectral types O7-M5 and luminosity classes I-V as defined on the MK system. We identify both atomic and molecular indices and line-ratios which are temperature and luminosity sensitive allowing spectral classification to be carried out in the H-band. The line ratios permit spectral classification in the presence of continuum excess emission, which is commonly found in pre-main sequence and evolved stars. We demonstrate that with spectra of R = 1000 obtained at SNR > 50 it is possible to derive spectral types within +- 2 subclasses for late-type stars. These data are available electronically through the Astronomical Data Center in addition to being served on the World-Wide-Web.Comment: To appear in the November 20, 1998 issue of ApJ (Volume 508, #1
    • 

    corecore