6,072 research outputs found

    Neuron splitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors

    Get PDF
    Neuron tree topology equations can be split into two subtrees and solved on different processors with no change in accuracy, stability, or computational effort; communication costs involve only sending and receiving two double precision values by each subtree at each time step. Splitting cells is useful in attaining load balance in neural network simulations, especially when there is a wide range of cell sizes and the number of cells is about the same as the number of processors. For compute-bound simulations load balance results in almost ideal runtime scaling. Application of the cell splitting method to two published network models exhibits good runtime scaling on twice as many processors as could be effectively used with whole-cell balancing

    Entanglement Sharing and Decoherence in the Spin-Bath

    Get PDF
    The monogamous nature of entanglement has been illustrated by the derivation of entanglement sharing inequalities - bounds on the amount of entanglement that can be shared amongst the various parts of a multipartite system. Motivated by recent studies of decoherence, we demonstrate an interesting manifestation of this phenomena that arises in system-environment models where there exists interactions between the modes or subsystems of the environment. We investigate this phenomena in the spin-bath environment, constructing an entanglement sharing inequality bounding the entanglement between a central spin and the environment in terms of the pairwise entanglement between individual bath spins. The relation of this result to decoherence will be illustrated using simplified system-bath models of decoherence.Comment: 5 pages, 1 figure v2: 6 pages 2 figures, additional example and reference

    Metachronal wave and hydrodynamic interaction for deterministic switching rowers

    Get PDF
    We employ a model system, called rowers, as a generic physical framework to define the problem of the coordinated motion of cilia (the metachronal wave) as a far from equilibrium process. Rowers are active (two-state) oscillators interacting solely through forces of hydrodynamic origin. In this work, we consider the case of fully deterministic dynamics, find analytical solutions of the equation of motion in the long wavelength (continuum) limit, and investigate numerically the short wavelength limit. We prove the existence of metachronal waves below a characteristic wavelength. Such waves are unstable and become stable only if the sign of the coupling is reversed. We also find that with normal hydrodynamic interaction the metachronal pattern has the form of stable trains of traveling wave packets sustained by the onset of anti-coordinated beating of consecutive rowers.Comment: 11 pages, 7 figure

    Lean towards learning: connecting Lean Thinking and human resource management in UK higher education

    Get PDF
    From its origins in the automotive industry, Lean Thinking is increasingly being seen as a solution to problems of efficiency and quality in other industries and sectors. In recent years attempts have been made to transfer Lean principles and practice to the higher education sector with indications of mixed consequences and debate over its suitability. This paper contributes to the debate by drawing evidence from thirty-four interviews conducted across two UK universities that have implemented Lean in some of their activities and we pay particular attention to the role of the HR function in facilitating its introduction. The findings suggest there are problems in understanding, communicating and transferring Lean Thinking in the higher education context; that, despite HR systems being vital facets of Lean, HR professionals are excluded from participation; and that as a consequence the depth and breadth of Lean application in the two institutions is very limited

    Element-ary Puns

    Get PDF
    The periodic table offers a lot of information, most of which is usually not used by high school students. However, it is important for students of chemistry, biology and physics to have some background related to the elements that make up the periodic table. Several students were working with a periodic table and realized they could make studying the elements more enjoyable by making up some statements that led to the actual naming of the element. For example: If you want to catch wild horses, europium

    An inflight refill unit for replenishing research animal drinking water

    Get PDF
    This paper presents the design process and development approach for a method of maintaining sufficient quantities of water for research animals during a Shuttle mission of long duration. An inflight refill unit (IRU) consisting of two major subsystems, a fluid pumping unit (FPU) and a collapsible water reservoir (CWR), were developed. The FPU provides the system measurement and controls, pump, water lines, and plumbing necessary to collect water coming into the unit from the potable water system and pump it out into the RAHF drinking water tanks. The CWR is a Kevlar (TM) reinforced storage bladder connected to the FPU, which has a capacity of 6 liters in its expanded volume and functions to store the water collected from the potable water system, allowing for transport of the water back to the Spacelab where it is pumped into each of two research animal holding facilities. Additional components of the IRU system include the inlet and outlet fluid hoses, a power cable for providing 29V direct current spacecraft electrical power to the pump within the FPU, a tether system for the unit when in use in Spacelab, and an adapter for mating the unit to the orbiter waste collection system in order to dump excess water after use in Spacelab

    Mitral cell spike synchrony modulated by dendrodendritic synapse location

    Get PDF
    On their long lateral dendrites, mitral cells of the olfactory bulb form dendrodendritic synapses with large populations of granule cell interneurons. The mitral-granule cell microcircuit operating through these reciprocal synapses has been implicated in inducing synchrony between mitral cells. However, the specific mechanisms of mitral cell synchrony operating through this microcircuit are largely unknown and are complicated by the finding that distal inhibition on the lateral dendrites does not modulate mitral cell spikes. In order to gain insight into how this circuit synchronizes mitral cells within its spatial constraints, we built on a reduced circuit model of biophysically realistic multi-compartment mitral and granule cells to explore systematically the roles of dendrodendritic synapse location and mitral cell separation on synchrony. The simulations showed that mitral cells can synchronize when separated at arbitrary distances through a shared set of granule cells, but synchrony is optimally attained when shared granule cells form two balanced subsets, each subset clustered near to a soma of the mitral cell pairs. Another constraint for synchrony is that the input magnitude must be balanced. When adjusting the input magnitude driving a particular mitral cell relative to another, the mitral-granule cell circuit served to normalize spike rates of the mitral cells while inducing a phase shift or delay in the more weakly driven cell. This shift in phase is absent when the granule cells are removed from the circuit. Our results indicate that the specific distribution of dendrodendritic synaptic clusters is critical for optimal synchronization of mitral cell spikes in response to their odor input

    Glomerular and mitral-granule cell microcircuits coordinate temporal and spatial information processing in the olfactory bulb

    Get PDF
    The olfactory bulb processes inputs from olfactory receptor neurons (ORNs) through two levels: the glomerular layer at the site of input, and the granule cell level at the site of output to the olfactory cortex. The sequence of action of these two levels has not yet been examined. We analyze this issue using a novel computational framework that is scaled up, in three-dimensions (3D), with realistic representations of the interactions between layers, activated by simulated natural odors, and constrained by experimental and theoretical analyses. We suggest that the postulated functions of glomerular circuits have as their primary role transforming a complex and disorganized input into a contrast-enhanced and normalized representation, but cannot provide for synchronization of the distributed glomerular outputs. By contrast, at the granule cell layer, the dendrodendritic interactions mediate temporal decorrelation, which we show is dependent on the preceding contrast enhancement by the glomerular layer. The results provide the first insights into the successive operations in the olfactory bulb, and demonstrate the significance of the modular organization around glomeruli. This layered organization is especially important for natural odor inputs, because they activate many overlapping glomeruli
    corecore