354 research outputs found

    Volatile emission from strawberry plants is induced by mite and leaf beetle feeding and methyl jasmonate

    Get PDF
    We have studied the emission of volatile organic compounds (VOCs) from young strawberry plants, cultivars Polka and Honeoye, after feeding by several strawberry herbivores under laboratory conditions. VOC profile of strawberry plants is highly dominated by green leaf volatiles (GLVs), which are released also due to mechanical damage. Our results reveal that strawberry has potential for inducible VOC defence, and this encourages testing the attractiveness of these strawberry VOCs to predatory mites

    Prolyl hydroxylase PHD3 activates oxygen-dependent protein aggregation

    Get PDF
    The HIF prolyl hydroxylases (PHDs/EGLNs) are central regulators of the molecular responses to oxygen availability. One isoform, PHD3, is expressed in response to hypoxia and causes apoptosis in oxygenated conditions in neural cells. Here we show that PHD3 forms subcellular aggregates in an oxygen-dependent manner. The aggregation of PHD3 was seen under normoxia and was strongly reduced under hypoxia or by the inactivation of the PHD3 hydroxylase activity. The PHD3 aggregates were dependent on microtubular integrity and contained components of the 26S proteasome, chaperones, and ubiquitin, thus demonstrating features that are characteristic for aggresome-like structures. Forced expression of the active PHD3 induced the aggregation of proteasomal components and activated apoptosis under normoxia in HeLa cells. The apoptosis was seen in cells prone to PHD3 aggregation and the PHD3 aggregation preceded apoptosis. The data demonstrates the cellular oxygen sensor PHD3 as a regulator of protein aggregation in response to varying oxygen availability

    An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly

    Get PDF
    Erythropoetin-producing hepatoma (Eph) receptors are cell-surface protein tyrosine kinases mediating cell-cell communication. Upon activation, they form signaling clusters. We report crystal structures of the full ectodomain of human EphA2 (eEphA2) both alone and in complex with the receptor-binding domain of the ligand ephrinA5 (ephrinA5 RBD). Unliganded eEphA2 forms linear arrays of staggered parallel receptors involving two patches of residues conserved across A-class Ephs. eEphA2-ephrinA5 RBD forms a more elaborate assembly, whose interfaces include the same conserved regions on eEphA2, but rearranged to accommodate ephrinA5 RBD. Cell-surface expression of mutant EphA2s showed that these interfaces are critical for localization at cell-cell contacts and activation-dependent degradation. Our results suggest a 'nucleation' mechanism whereby a limited number of ligand-receptor interactions 'seed' an arrangement of receptors which can propagate into extended signaling arrays

    High throughput in vitro seed germination screen identified new ABA responsive RING-type ubiquitin E3 ligases in Arabidopsis thaliana

    Get PDF
    Seed quality is an important factor for seedling vigour as well as adult plant resilience. The key quality attributes are related to physical characteristics, physiological performance, genetic background and health status of the seeds. Many ways to address seed quality attributes have been developed and recently many of them have featured automated high throughput methods. In our study, we addressed two of the seed quality attributes, namely physiological performance and genetic background by analysing germination rates in our mutant collection. These mutants represent ubiquitin E3 ligases that transcriptionally respond to abscisic acid (ABA). This plant hormone is an important regulator of germination and seedling establishment. To facilitate in vitro germination screens of large seed collections a high throughput image-based assay was developed. As a read out of the germination on ABA treatment the cotyledon emergence was detected with top view chlorophyll fluorescence camera. By applying the ABA treatment during germination, RING-type ubiquitin E3 ligase mutants were identified, showing either resistant or sensitive responses to ABA. In conclusion, a scalable high throughput screen for in vitro germination assay was established that allowed fast screening of tens of mutants in a hormone supplemented media.Peer reviewe

    Small-molecule screens to study lateral root development

    Get PDF
    Development of the root system is essential for proper plant growth and development. Extension of the root system is achieved by the continuous establishment of new meristems in existing parental root tissues, which leads to the development of lateral roots. This process of lateral root organogenesis consists of different developmental stages, which are all controlled by the plant hormone auxin. In this chapter, we describe a screening method in Arabidopsis thaliana to identify small synthetic molecules that interfere with the process of lateral root development during specific developmental stages

    Two chloroplast thioredoxin systems differentially modulate photosynthesis in Arabidopsis depending on light intensity and leaf age

    Get PDF
    Various regulatory mechanisms have evolved in plants to optimize photosynthetic activity under fluctuating light. Thioredoxins (TRX) are members of the regulatory network balancing activities of light and carbon fixation reactions in chloroplasts. We have studied the impact of two chloroplast TRX systems, the ferredoxin-dependent TRX reductase (FTR) and the NADPH-dependent TRX reductase C (NTRC) on regulation of photosynthesis by mutants lacking or overexpressing a component of either system. Plants were subjected to image-based phenotyping and chlorophyll fluorescence measurements that allow long-term monitoring of the development and photosynthetic activity of the rosettes, respectively. Our experiments demonstrate that NTRC and FTR systems respond differently to variation of light intensity. NTRC was an indispensable regulator of photosynthesis in young leaves, at light-intensity transitions and under low light intensities limiting photosynthesis, whereas steady-state exposure of plants to growth or higher light intensities diminished the need of NTRC in regulation of photosynthesis. In fluctuating light, overexpression of NTRC increased the quantum yield of Photosystem II (YII) at low light and stimulated the relaxation of non-photochemical quenching (NPQ) after high light exposure, indicating that overexpression of NTRC improves leaf capacity to convert light energy to chemical energy under these conditions. Overexpression of chimeric protein (NTR-TRXf) containing both the thioredoxin reductase and TRXf activity on anntrcmutant background, did not completely recover either growth or steady-state photosynthetic activity, whereas OE-NTR-TRXf plants exposed to fluctuating light regained the wild-type level of Y(II) and NPQ

    Intermittent exposure to traces of green leaf volatiles triggers a plant response

    Get PDF
    Plants are known to mount a defensive response when exposed to volatile chemicals from other plants, but the critical concentration required for this response is not known. We showed that intermittent exposure over a period of 3 weeks to trace amounts (less than 140 pptV) of green leaf volatiles emitted by a freshly damaged Arabidopsis plant induced physiological (defensive) responses in undamaged neighbouring plants. These results demonstrated that plants can respond to long-term repeated exposures to subcritical amounts of chemical signals

    Sensitivity of barley varieties to weather in Finland

    Get PDF
    Global climate change is predicted to shift seasonal temperature and precipitation patterns. An increasing frequency of extreme weather events such as heat waves and prolonged droughts is predicted, but there are high levels of uncertainty about the nature of local changes. Crop adaptation will be important in reducing potential damage to agriculture. Crop diversity may enhance resilience to climate variability and changes that are difficult to predict. Therefore, there has to be sufficient diversity within the set of available cultivars in response to weather parameters critical for yield formation. To determine the scale of such ‘weather response diversity’ within barley (Hordeum vulgare L.), an important crop in northern conditions, the yield responses of a wide range of modern and historical varieties were analysed according to a well-defined set of critical agro-meteorological variables. The Finnish long-term dataset of MTT Official Variety Trials was used together with historical weather records of the Finnish Meteorological Institute. The foci of the analysis were firstly to describe the general response of barley to different weather conditions and secondly to reveal the diversity among varieties in the sensitivity to each weather variable. It was established that barley yields were frequently reduced by drought or excessive rain early in the season, by high temperatures at around heading, and by accelerated temperature sum accumulation rates during periods 2 weeks before heading and between heading and yellow ripeness. Low temperatures early in the season increased yields, but frost during the first 4 weeks after sowing had no effect. After canopy establishment, higher precipitation on average resulted in higher yields. In a cultivar-specific analysis, it was found that there were differences in responses to all but three of the studied climatic variables: waterlogging and drought early in the season and temperature sum accumulation rate before heading. The results suggest that low temperatures early in the season, delayed sowing, rain 3–7 weeks after sowing, a temperature change 3–4 weeks after sowing, a high temperature sum accumulation rate from heading to yellow ripeness and high temperatures (⩾25°C) at around heading could mostly be addressed by exploiting the traits found in the range of varieties included in the present study. However, new technology and novel genetic material are needed to enable crops to withstand periods of excessive rain or drought early in the season and to enhance performance under increased temperature sum accumulation rates prior to heading

    Introduction: looking beyond the walls

    Get PDF
    In its consideration of the remarkable extent and variety of non-university researchers, this book takes a broader view of ‘knowledge’ and ‘research’ than in the many hot debates about today’s knowledge society, ‘learning age’, or organisation of research. It goes beyond the commonly held image of ‘knowledge’ as something produced and owned by the full-time experts to take a look at those engaged in active knowledge building outside the university walls
    corecore