186 research outputs found

    Mantle-Derived Helium in Hot Springs of the Cordillera Blanca, Peru: Implications for Mantle-to-Crust Fluid Transfer in a Flat-Slab Subduction Setting

    Get PDF
    Fault-controlled hot springs in the Cordillera Blanca, Peru provide geochemical evidence of mantle-derived fluids in a modern flat-slab subduction setting. The Cordillera Blanca is an ~200km-long mountain range that contains the highest peaks in the Peruvian Andes, located in an amagmatic reach of the Andean arc. The Cordillera Blanca detachment defines the southwestern edge of the range and records a progression of top-down-to-the-west ductile shear to brittle normal faulting since ~5Ma. Hot springs, recording temperatures up to 78°C, issue along this fault zone and are CO2-rich, near neutral, alkaline-chloride to alkaline-carbonate waters, with elevated trace metal contents including arsenic (≤11ppm). Water δ18OSMOW (-14.2 to -4.9‰) and δDSMOW (-106.2 to -74.3‰), trends in elemental chemistry, and cation geothermometry collectively demonstrate mixing of hot (200-260°C) saline fluid with cold meteoric water along the fault. Helium isotope ratios (3He/4He) for dissolved gases in the waters range from 0.62 to 1.98 RA (where RA=air 3He/4He), indicating the presence of up to 25% mantle-derived helium. Given the long duration since, and large distance to active magmatism in the region, and the possible presence of a tear in the flat slab south of the Cordillera Blanca, we suggest that mantle helium may originate from asthenosphere entering the slab tear, or from the continental mantle-lithosphere, mobilized by metasomatic fluids derived from slab dehydration. © 2015 Elsevier B.V

    The Atacama Cosmology Telescope: A Measurement of the Thermal Sunyaev-Zel'dovich Effect Using the Skewness of the CMB Temperature Distribution

    Get PDF
    We present a detection of the unnormalized skewness induced by the thermal Sunyaev-Zel'dovich (tSZ) effect in filtered Atacama Cosmology Telescope (ACT) 148 GHz cosmic microwave background temperature maps. Contamination due to infrared and radio sources is minimized by template subtraction of resolved sources and by constructing a mask using outlying values in the 218 GHz (tSZ-null) ACT maps. We measure = -31 +- 6 \mu K^3 (measurement error only) or +- 14 \mu K^3 (including cosmic variance error) in the filtered ACT data, a 5-sigma detection. We show that the skewness is a sensitive probe of sigma_8, and use analytic calculations and tSZ simulations to obtain cosmological constraints from this measurement. From this signal alone we infer a value of sigma_8= 0.79 +0.03 -0.03 (68 % C.L.) +0.06 -0.06 (95 % C.L.). Our results demonstrate that measurements of non-Gaussianity can be a useful method for characterizing the tSZ effect and extracting the underlying cosmological information.Comment: 9 pages, 5 figures. Replaced with version accepted by Phys. Rev. D, with improvements to the likelihood function and the IR source treatment; only minor changes in the result

    The Atacama Cosmology Telescope: Two-Season ACTPol Lensing Power Spectrum

    Get PDF
    We report a measurement of the power spectrum of cosmic microwave background (CMB) lensing from two seasons of Atacama Cosmology Telescope Polarimeter (ACTPol) CMB data. The CMB lensing power spectrum is extracted from both temperature and polarization data using quadratic estimators. We obtain results that are consistent with the expectation from the best-fit Planck LCDM model over a range of multipoles L=80-2100, with an amplitude of lensing A_lens = 1.06 +/- 0.15 (stat.) +/- 0.06 (sys.) relative to Planck. Our measurement of the CMB lensing power spectrum gives sigma_8 Omega_m^0.25 = 0.643 +/- 0.054; including baryon acoustic oscillation scale data, we constrain the amplitude of density fluctuations to be sigma_8 = 0.831 +/- 0.053. We also update constraints on the neutrino mass sum. We verify our lensing measurement with a number of null tests and systematic checks, finding no evidence of significant systematic errors. This measurement relies on a small fraction of the ACTPol data already taken; more precise lensing results can therefore be expected from the full ACTPol dataset.Comment: 17 pages, 11 figures, to be submitted to Physical Review

    The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters

    Get PDF
    We present the temperature and polarization angular power spectra measured by the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time data collected during 2013-14 using two detector arrays at 149 GHz, from 548 deg2^2 of sky on the celestial equator. We use these spectra, and the spectra measured with the MBAC camera on ACT from 2008-10, in combination with Planck and WMAP data to estimate cosmological parameters from the temperature, polarization, and temperature-polarization cross-correlations. We find the new ACTPol data to be consistent with the LCDM model. The ACTPol temperature-polarization cross-spectrum now provides stronger constraints on multiple parameters than the ACTPol temperature spectrum, including the baryon density, the acoustic peak angular scale, and the derived Hubble constant. Adding the new data to planck temperature data tightens the limits on damping tail parameters, for example reducing the joint uncertainty on the number of neutrino species and the primordial helium fraction by 20%.Comment: 23 pages, 25 figure

    ATMIN is a transcriptional regulator of both lung morphogenesis and ciliogenesis

    Get PDF
    Initially identified in DNA damage repair, ATM-interactor (ATMIN) further functions as a transcriptional regulator of lung morphogenesis. Here we analyse three mouse mutants, Atmin(gpg6/gpg6), Atmin(H210Q/H210Q) and Dynll1(GT/GT), revealing how ATMIN and its transcriptional target dynein light chain LC8-type 1 (DYNLL1) are required for normal lung morphogenesis and ciliogenesis. Expression screening of ciliogenic genes confirmed Dynll1 to be controlled by ATMIN and further revealed moderately altered expression of known intraflagellar transport (IFT) protein-encoding loci in Atmin mutant embryos. Significantly, Dynll1(GT/GT) embryonic cilia exhibited shortening and bulging, highly similar to the characterised retrograde IFT phenotype of Dync2h1. Depletion of ATMIN or DYNLL1 in cultured cells recapitulated the in vivo ciliogenesis phenotypes and expression of DYNLL1 or the related DYNLL2 rescued the effects of loss of ATMIN, demonstrating that ATMIN primarily promotes ciliogenesis by regulating Dynll1 expression. Furthermore, DYNLL1 as well as DYNLL2 localised to cilia in puncta, consistent with IFT particles, and physically interacted with WDR34, a mammalian homologue of the Chlamydomonas cytoplasmic dynein 2 intermediate chain that also localised to the cilium. This study extends the established Atmin-Dynll1 relationship into a developmental and a ciliary context, uncovering a novel series of interactions between DYNLL1, WDR34 and ATMIN. This identifies potential novel components of cytoplasmic dynein 2 and furthermore provides fresh insights into the molecular pathogenesis of human skeletal ciliopathie

    The Atacama Cosmology Telescope: Cosmological parameters from three seasons of data

    Get PDF
    We present constraints on cosmological and astrophysical parameters from high-resolution microwave background maps at 148 GHz and 218 GHz made by the Atacama Cosmology Telescope (ACT) in three seasons of observations from 2008 to 2010. A model of primary cosmological and secondary foreground parameters is fit to the map power spectra and lensing deflection power spectrum, including contributions from both the thermal Sunyaev-Zeldovich (tSZ) effect and the kinematic Sunyaev-Zeldovich (kSZ) effect, Poisson and correlated anisotropy from unresolved infrared sources, radio sources, and the correlation between the tSZ effect and infrared sources. The power ell^2 C_ell/2pi of the thermal SZ power spectrum at 148 GHz is measured to be 3.4 +\- 1.4 muK^2 at ell=3000, while the corresponding amplitude of the kinematic SZ power spectrum has a 95% confidence level upper limit of 8.6 muK^2. Combining ACT power spectra with the WMAP 7-year temperature and polarization power spectra, we find excellent consistency with the LCDM model. We constrain the number of effective relativistic degrees of freedom in the early universe to be Neff=2.79 +\- 0.56, in agreement with the canonical value of Neff=3.046 for three massless neutrinos. We constrain the sum of the neutrino masses to be Sigma m_nu < 0.39 eV at 95% confidence when combining ACT and WMAP 7-year data with BAO and Hubble constant measurements. We constrain the amount of primordial helium to be Yp = 0.225 +\- 0.034, and measure no variation in the fine structure constant alpha since recombination, with alpha/alpha0 = 1.004 +/- 0.005. We also find no evidence for any running of the scalar spectral index, dns/dlnk = -0.004 +\- 0.012.Comment: 26 pages, 22 figures. This paper is a companion to Das et al. (2013) and Dunkley et al. (2013). Matches published JCAP versio

    The Atacama Cosmology Telescope: Detection of mm-wave transient sources

    Full text link
    We report on the serendipitous discovery of three transient mm-wave sources using data from the Atacama Cosmology Telescope. The first, detected at RA = 273.8138, dec = -49.4628 at 50σ{\sim}50\sigma total, brightened from less than 5 mJy to at least 1100 mJy at 150 GHz with an unknown rise time shorter than thirteen days, during which the increase from 250 mJy to 1100 mJy took only 8 minutes. Maximum flux was observed on 2019-11-8. The source's spectral index in flux between 90 and 150 GHz was positive, α=1.5±0.2\alpha = 1.5\pm0.2. The second, detected at RA = 105.1584, dec = -11.2434 at 20σ{\sim}20\sigma total, brightened from less than 20 mJy to at least 300 mJy at 150 GHz with an unknown rise time shorter than eight days. Maximum flux was observed on 2019-12-15. Its spectral index was also positive, α=1.8±0.2\alpha = 1.8\pm0.2. The third, detected at RA = 301.9952, dec = 16.1652 at 40σ{\sim}40\sigma total, brightened from less than 8 mJy to at least 300 mJy at 150 GHz over a day or less but decayed over a few days. Maximum flux was observed on 2018-9-11. Its spectrum was approximately flat, with a spectral index of α=0.2±0.1\alpha = -0.2\pm0.1. None of the sources were polarized to the limits of these measurements. The two rising-spectrum sources are coincident in position with M and K stars, while the third is coincident with a G star.Comment: 8 pages, 4 figures, 1 tabl

    The Atacama Cosmology Telescope: Cosmology from cross-correlations of unWISE galaxies and ACT DR6 CMB lensing

    Full text link
    We present tomographic measurements of structure growth using cross-correlations of Atacama Cosmology Telescope (ACT) DR6 and Planck CMB lensing maps with the unWISE Blue and Green galaxy samples, which span the redshift ranges 0.2z1.10.2 \lesssim z \lesssim 1.1 and 0.3z1.80.3 \lesssim z \lesssim 1.8, respectively. We improve on prior unWISE cross-correlations not just by making use of the new, high-precision ACT DR6 lensing maps, but also by including additional spectroscopic data for redshift calibration and by analysing our measurements with a more flexible theoretical model. An extensive suite of systematic and null tests within a blind analysis framework ensures that our results are robust. We determine the amplitude of matter fluctuations at low redshifts (z0.21.6z\simeq 0.2-1.6), finding S8σ8(Ωm/0.3)0.5=0.813±0.021S_8 \equiv \sigma_8 (\Omega_m / 0.3)^{0.5} = 0.813 \pm 0.021 using the ACT cross-correlation alone and S8=0.810±0.015S_8 = 0.810 \pm 0.015 with a combination of Planck and ACT cross-correlations; these measurements are fully consistent with the predictions from primary CMB measurements assuming standard structure growth. The addition of Baryon Acoustic Oscillation data breaks the degeneracy between σ8\sigma_8 and Ωm\Omega_m, allowing us to measure σ8=0.813±0.020\sigma_8 = 0.813 \pm 0.020 from the cross-correlation of unWISE with ACT and σ8=0.813±0.015\sigma_8 = 0.813\pm 0.015 from the combination of cross-correlations with ACT and Planck. These results also agree with the expectations from primary CMB extrapolations in Λ\LambdaCDM cosmology; the consistency of σ8\sigma_8 derived from our two redshift samples at z0.6z \sim 0.6 and 1.11.1 provides a further check of our cosmological model. Our results suggest that structure formation on linear scales is well described by Λ\LambdaCDM even down to low redshifts z1z\lesssim 1.Comment: 73 pages (incl. 30 pages of appendices), 50 figures, 16 tables, to be submitted to ApJ. Watch G. S. Farren and A. Krolewski discuss the analysis and results under https://cosmologytalks.com/2023/09/11/act-unwis

    Overfishing Drives Over One-Third of All Sharks and Rays Toward a Global Extinction Crisis

    Get PDF
    The scale and drivers of marine biodiversity loss are being revealed by the International Union for Conservation of Nature (IUCN) Red List assessment process. We present the first global reassessment of 1,199 species in Class Chondrichthyes-sharks, rays, and chimeras. The first global assessment (in 2014) concluded that one-quarter (24%) of species were threatened. Now, 391 (32.6%) species are threatened with extinction. When this percentage of threat is applied to Data Deficient species, more than one-third (37.5%) of chondrichthyans are estimated to be threatened, with much of this change resulting from new information. Three species are Critically Endangered (Possibly Extinct), representing possibly the first global marine fish extinctions due to overfishing. Consequently, the chondrichthyan extinction rate is potentially 25 extinctions per million species years, comparable to that of terrestrial vertebrates. Overfishing is the universal threat affecting all 391 threatened species and is the sole threat for 67.3% of species and interacts with three other threats for the remaining third: loss and degradation of habitat (31.2% of threatened species), climate change (10.2%), and pollution (6.9%). Species are disproportionately threatened in tropical and subtropical coastal waters. Science-based limits on fishing, effective marine protected areas, and approaches that reduce or eliminate fishing mortality are urgently needed to minimize mortality of threatened species and ensure sustainable catch and trade of others. Immediate action is essential to prevent further extinctions and protect the potential for food security and ecosystem functions provided by this iconic lineage of predators
    corecore