19 research outputs found

    Crystal structures from the Plasmodium peroxiredoxins: new insights into oligomerization and product binding

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Plasmodium falciparum </it>is the protozoan parasite primarily responsible for more than one million malarial deaths, annually, and is developing resistance to current therapies. Throughout its lifespan, the parasite is subjected to oxidative attack, so <it>Plasmodium </it>antioxidant defences are essential for its survival and are targets for disease control.</p> <p>Results</p> <p>To further understand the molecular aspects of the <it>Plasmodium </it>redox system, we solved 4 structures of <it>Plasmodium </it>peroxiredoxins (Prx). Our study has confirmed <it>Pv</it>Trx-Px1 to be a hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>)-sensitive peroxiredoxin. We have identified and characterized the novel toroid octameric oligomer of <it>Py</it>Trx-Px1, which may be attributed to the interplay of several factors including: (1) the orientation of the conserved surface/buried arginine of the NNLA(I/L)GRS-loop; and (2) the <it>C</it>-terminal tail positioning (also associated with the aforementioned conserved loop) which facilitates the intermolecular hydrogen bond between dimers (in an A-C fashion). In addition, a notable feature of the disulfide bonds in some of the Prx crystal structures is discussed. Finally, insight into the latter stages of the peroxiredoxin reaction coordinate is gained. Our structure of <it>Py</it>Prx6 is not only in the sulfinic acid (RSO<sub>2</sub>H) form, but it is also with glycerol bound in a way (not previously observed) indicative of product binding.</p> <p>Conclusions</p> <p>The structural characterization of <it>Plasmodium </it>peroxiredoxins provided herein provides insight into their oligomerization and product binding which may facilitate the targeting of these antioxidant defences. Although the structural basis for the octameric oligomerization is further understood, the results yield more questions about the biological implications of the peroxiredoxin oligomerization, as multiple toroid configurations are now known. The crystal structure depicting the product bound active site gives insight into the overoxidation of the active site and allows further characterization of the leaving group chemistry.</p

    Target highlights in CASP9: Experimental target structures for the critical assessment of techniques for protein structure prediction

    Get PDF
    15 pags, 9 figsOne goal of the CASP community wide experiment on the critical assessment of techniques for protein structure prediction is to identify the current state of the art in protein structure prediction and modeling. A fundamental principle of CASP is blind prediction on a set of relevant protein targets, that is, the participating computational methods are tested on a common set of experimental target proteins, for which the experimental structures are not known at the time of modeling. Therefore, the CASP experiment would not have been possible without broad support of the experimental protein structural biology community. In this article, several experimental groups discuss the structures of the proteins which they provided as prediction targets for CASP9, highlighting structural and functional peculiarities of these structures: the long tail fiber protein gp37 from bacteriophage T4, the cyclic GMP-dependent protein kinase Iβ dimerization/docking domain, the ectodomain of the JTB (jumping translocation breakpoint) transmembrane receptor, Autotaxin in complex with an inhibitor, the DNA-binding J-binding protein 1 domain essential for biosynthesis and maintenance of DNA base-J (β-D-glucosyl-hydroxymethyluracil) in Trypanosoma and Leishmania, an so far uncharacterized 73 residue domain from Ruminococcus gnavus with a fold typical for PDZ-like domains, a domain from the phycobilisome core-membrane linker phycobiliprotein ApcE from Synechocystis, the heat shock protein 90 activators PFC0360w and PFC0270w from Plasmodium falciparum, and 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae. © 2011 Wiley-Liss, Inc.Grant sponsor: Spanish Ministry of Education and Science; Grant number: BFU2008-01588; Grant sponsor: European Commission; Grant number: NMP4-CT-2006-033256; Grant sponsor: Spanish Ministry of Education and Science (José Castillejo fellowship); Grant sponsor: Xunta de Galicia (Angeles Alvariño fellowship); Grant sponsor: National Institutes of Health; Grant numbers: K22-CA124517 (D.E.C.); R01-GM090161 (C.K.) GM074942; GM094585; Grant sponsor: U. S. Department of Energy, Office of Biological and Environmental Research; Grant number: DE-AC02-06CH11357 (to A.J.); Grant sponsor: Foundation for Polish Science (to K.M.); Grant sponsor: NSF; Grant number: DBI 0829586

    Exploring the Trypanosoma brucei Hsp83 Potential as a Target for Structure Guided Drug Design

    Get PDF
    Human African trypanosomiasis is a neglected parasitic disease that is fatal if untreated. The current drugs available to eliminate the causative agent Trypanosoma brucei have multiple liabilities, including toxicity, increasing problems due to treatment failure and limited efficacy. There are two approaches to discover novel antimicrobial drugs--whole-cell screening and target-based discovery. In the latter case, there is a need to identify and validate novel drug targets in Trypanosoma parasites. The heat shock proteins (Hsp), while best known as cancer targets with a number of drug candidates in clinical development, are a family of emerging targets for infectious diseases. In this paper, we report the exploration of T. brucei Hsp83--a homolog of human Hsp90--as a drug target using multiple biophysical and biochemical techniques. Our approach included the characterization of the chemical sensitivity of the parasitic chaperone against a library of known Hsp90 inhibitors by means of differential scanning fluorimetry (DSF). Several compounds identified by this screening procedure were further studied using isothermal titration calorimetry (ITC) and X-ray crystallography, as well as tested in parasite growth inhibitions assays. These experiments led us to the identification of a benzamide derivative compound capable of interacting with TbHsp83 more strongly than with its human homologs and structural rationalization of this selectivity. The results highlight the opportunities created by subtle structural differences to develop new series of compounds to selectively target the Trypanosoma brucei chaperone and effectively kill the sleeping sickness parasite

    The Crystal Structure of Toxoplasma gondii Pyruvate Kinase 1

    Get PDF
    Background: Pyruvate kinase (PK), which catalyzes the final step in glycolysis converting phosphoenolpyruvate to pyruvate, is a central metabolic regulator in most organisms. Consequently PK represents an attractive therapeutic target in cancer and human pathogens, like Apicomplexans. The phylum Aplicomplexa, a group of exclusively parasitic organisms, includes the genera Plasmodium, Cryptosporidium and Toxoplasma, the etiological agents of malaria, cryptosporidiosis and toxoplasmosis respectively. Toxoplasma gondii infection causes a mild illness and is a very common infection affecting nearly one third of the worlds population. Methodology/Principal Findings: We have determined the crystal structure of the PK1 enzyme from T. gondii, with the B domain in the open and closed conformations. We have also characterized its enzymatic activity and confirmed glucose-6-phosphate as its allosteric activator. This is the first description of a PK enzyme in a closed inactive conformation without any bound substrate. Comparison of the two tetrameric TgPK1 structures indicates a reorientation of the monomers with a concomitant change in the buried surface among adjacent monomers. The change in the buried surface was associated with significant B domain movements in one of the interacting monomers. Conclusions: We hypothesize that a loop in the interface between the A and B domains plays an important role linking the position of the B domain to the buried surface among monomers through two a-helices. The proposed model links the catalytic cycle of the enzyme with its domain movements and highlights the contribution of the interface between adjacent subunits. In addition, an unusual ordered conformation was observed in one of the allosteric binding domains and it is related to a specific apicomplexan insertion. The sequence and structural particularity would explain the atypical activation by a mono-phosphorylated sugar. The sum of peculiarities raises this enzyme as an emerging target for drug discovery.Original Publication:Rebecca Bakszt, Amy Wernimont, Abdellah Allali-Hassani, Man Wai Mok, Tanya Hills, Raymond Hui and Juan C Pizarro, The Crystal Structure of Toxoplasma gondii Pyruvate Kinase 1, 2010, PLOS ONE, (5), 9, 0012736.http://dx.doi.org/10.1371/journal.pone.0012736Licensee: Public Library of Science (PLoS)http://www.plos.org

    Impact of COVID-19 pandemic on prevalence of Clostridioides difficile infection in a UK tertiary centre

    No full text
    Serious concerns have been raised about a possible increase in cases of Clostridioides difficile infection (CDI) during the COVID-19 pandemic. We conducted a retrospective observational single centre study which revealed that total combined community and hospital-based quarterly rates of CDI decreased during the pandemic compared to the pre-pandemic period

    Crystallographic structure of the tetratricopeptide repeat domain of Plasmodium falciparum FKBP35 and its molecular interaction with Hsp90 C-terminal pentapeptide

    No full text
    Plasmodium falciparum FK506-binding protein 35 (PfFKBP35) that binds to FK506 contains a conserved tetratricopeptide repeat (TPR) domain. Several known TPR domains such as Hop, PPP5, CHIP, and FKBP52 are structurally conserved and are able to interact with molecular chaperones such as Hsp70/Hsp90. Here, we present the crystal structure of PfFKBP35-TPR and demonstrate its interaction with Hsp90 C-terminal pentapeptide (MEEVD) by surface plasmon resonance and nuclear magnetic resonance spectroscopy-based binding studies. Our sequence and structural analyses reveal that PfFKBP35 is similar to Hop and PPP5 in possessing all the conserved residues which are important for carboxylate clamping with Hsp90. Mutational studies were carried out on positively charged clamp residues that are crucial for binding to carboxylate groups of aspartate, showing that all the mutated residues are important for Hsp90 binding. Molecular docking and electrostatic calculations demonstrated that the MEEVD peptide of Hsp90 can form aspartate clamp unlike FKBP52. Our results provide insightful information and structural basis about the molecular interaction between PfFKBP35-TPR and Hsp90

    Protein-ligand interaction maps of <i>T. brucei</i> Hsp83 NTD complexes.

    No full text
    <p>The Hsp83 NTD-AMPPNP interaction map was derived from the <i>L. major</i> complex structure (PDB entry 3U67). The gray region represents the adenosine binding pocket; additional residues in common with the nucleotide analogue complex structure are highlighted in blue.</p

    Hsp90 inhibitors.

    No full text
    <p>Chemical representation of the compounds co-crystallized with <i>T. brucei</i> Hsp83 NTD and the non- commercially available compounds used in this study. All the compounds are listed in the supplementary material (<a href="http://www.plosntds.org/article/info:doi/10.1371/journal.pntd.0002492#pntd.0002492.s002" target="_blank">Fig. S2</a>).</p
    corecore