65 research outputs found

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Power balance analysis at the L-H transition in JET-ILW NBI-heated deuterium plasmas

    No full text
    The understanding of the physics underlying the L-H transition has strong implications for ITER experimental reactor and demonstration power plant (DEMO). In many tokamaks, including JET, it has been observed that, at a particular plasma density, n e,min, the power necessary to access H-mode PL-H is minimum. In the present work, L-H transitions of JET deuterium plasmas heated by neutral beam injection (NBI) are studied for the first time by means of a power balance analysis to characterize the main contributions in the transition, through integrated transport modelling. In the pulses analysed, we do observe a minimum of the L-H power threshold in density, indicating the presence of density branches and of n e,min. Electron and ion heat fluxes at the transition are estimated separately. The electron/ion equipartition power results in favour of the ions, as shown by QuaLiKiz quasilinear gyrokinetic simulations, which predict a larger ion transport that causes T e > T i. The resulting edge ion heat flux also shows a clear change of slope below n e,min, similarly to ASDEX-Upgrade (AUG) NBI pulses (Ryter et al 2014 Nucl. Fusion 54 083003). JET NBI data are compared to radio-frequency heated AUG and Alcator C-mod pulses (Schmidtmayr et al 2018 Nucl. Fusion 58 056003), showing a different trend of the power, coupled to ions at the L-H transition with respect to the linearity observed in the radio-frequency heated plasmas. The presence of n e,min and the role of the ion heat flux is discussed in the paper, although it seems it is not possible to explain the presence of a PL-H minimum in density by a critical ion heat flux and by the equipartition power for the JET NBI-heated plasmas analysed

    Power balance analysis at the L-H transition in JET-ILW NBI-heated deuterium plasmas

    No full text
    The understanding of the physics underlying the L-H transition has strong implications for ITER experimental reactor and demonstration power plant (DEMO). In many tokamaks, including JET, it has been observed that, at a particular plasma density, n e,min , the power necessary to access H-mode P L-H is minimum. In the present work, L-H transitions of JET deuterium plasmas heated by neutral beam injection (NBI) are studied for the first time by means of a power balance analysis to characterize the main contributions in the transition, through integrated transport modelling. In the pulses analysed, we do observe a minimum of the L-H power threshold in density, indicating the presence of density branches and of n e,min . Electron and ion heat fluxes at the transition are estimated separately. The electron/ion equipartition power results in favour of the ions, as shown by QuaLiKiz quasilinear gyrokinetic simulations, which predict a larger ion transport that causes T e > T i. The resulting edge ion heat flux also shows a clear change of slope below n e,min , similarly to ASDEX-Upgrade (AUG) NBI pulses (Ryter et al 2014 Nucl. Fusion 54 083003). JET NBI data are compared to radio-frequency heated AUG and Alcator C-mod pulses (Schmidtmayr et al 2018 Nucl. Fusion 58 056003), showing a different trend of the power, coupled to ions at the L-H transition with respect to the linearity observed in the radio-frequency heated plasmas. The presence of n e,min and the role of the ion heat flux is discussed in the paper, although it seems it is not possible to explain the presence of a P L-H minimum in density by a critical ion heat flux and by the equipartition power for the JET NBI-heated plasmas analysed

    Power balance analysis at the L-H transition in JET-ILW NBI-heated deuterium plasmas

    No full text
    The understanding of the physics underlying the L-H transition has strong implications for ITER experimental reactor and demonstration power plant (DEMO). In many tokamaks, including JET, it has been observed that, at a particular plasma density, n e,min , the power necessary to access H-mode P L-H is minimum. In the present work, L-H transitions of JET deuterium plasmas heated by neutral beam injection (NBI) are studied for the first time by means of a power balance analysis to characterize the main contributions in the transition, through integrated transport modelling. In the pulses analysed, we do observe a minimum of the L-H power threshold in density, indicating the presence of density branches and of n e,min . Electron and ion heat fluxes at the transition are estimated separately. The electron/ion equipartition power results in favour of the ions, as shown by QuaLiKiz quasilinear gyrokinetic simulations, which predict a larger ion transport that causes T e > T i. The resulting edge ion heat flux also shows a clear change of slope below n e,min , similarly to ASDEX-Upgrade (AUG) NBI pulses (Ryter et al 2014 Nucl. Fusion 54 083003). JET NBI data are compared to radio-frequency heated AUG and Alcator C-mod pulses (Schmidtmayr et al 2018 Nucl. Fusion 58 056003), showing a different trend of the power, coupled to ions at the L-H transition with respect to the linearity observed in the radio-frequency heated plasmas. The presence of n e,min and the role of the ion heat flux is discussed in the paper, although it seems it is not possible to explain the presence of a P L-H minimum in density by a critical ion heat flux and by the equipartition power for the JET NBI-heated plasmas analysed.<br/

    Power balance analysis at the L-H transition in JET-ILW NBI-heated deuterium plasmas

    Get PDF
    The understanding of the physics underlying the L-H transition has strong implications for ITER experimental reactor and demonstration power plant (DEMO). In many tokamaks, including JET, it has been observed that, at a particular plasma density, n e,min , the power necessary to access H-mode P L-H is minimum. In the present work, L-H transitions of JET deuterium plasmas heated by neutral beam injection (NBI) are studied for the first time by means of a power balance analysis to characterize the main contributions in the transition, through integrated transport modelling. In the pulses analysed, we do observe a minimum of the L-H power threshold in density, indicating the presence of density branches and of n e,min . Electron and ion heat fluxes at the transition are estimated separately. The electron/ion equipartition power results in favour of the ions, as shown by QuaLiKiz quasilinear gyrokinetic simulations, which predict a larger ion transport that causes T e > T i. The resulting edge ion heat flux also shows a clear change of slope below n e,min , similarly to ASDEX-Upgrade (AUG) NBI pulses (Ryter et al 2014 Nucl. Fusion 54 083003). JET NBI data are compared to radio-frequency heated AUG and Alcator C-mod pulses (Schmidtmayr et al 2018 Nucl. Fusion 58 056003), showing a different trend of the power, coupled to ions at the L-H transition with respect to the linearity observed in the radio-frequency heated plasmas. The presence of n e,min and the role of the ion heat flux is discussed in the paper, although it seems it is not possible to explain the presence of a P L-H minimum in density by a critical ion heat flux and by the equipartition power for the JET NBI-heated plasmas analysed.<br/
    corecore