24 research outputs found

    Highly confined low-loss plasmons in graphene-boron nitride heterostructures

    Get PDF
    Graphene plasmons were predicted to possess ultra-strong field confinement and very low damping at the same time, enabling new classes of devices for deep subwavelength metamaterials, single-photon nonlinearities, extraordinarily strong light-matter interactions and nano-optoelectronic switches. While all of these great prospects require low damping, thus far strong plasmon damping was observed, with both impurity scattering and many-body effects in graphene proposed as possible explanations. With the advent of van der Waals heterostructures, new methods have been developed to integrate graphene with other atomically flat materials. In this letter we exploit near-field microscopy to image propagating plasmons in high quality graphene encapsulated between two films of hexagonal boron nitride (h-BN). We determine dispersion and particularly plasmon damping in real space. We find unprecedented low plasmon damping combined with strong field confinement, and identify the main damping channels as intrinsic thermal phonons in the graphene and dielectric losses in the h-BN. The observation and in-depth understanding of low plasmon damping is the key for the development of graphene nano-photonic and nano-optoelectronic devices

    Tuning quantum non-local effects in graphene plasmonics

    Full text link
    The response of an electron system to electromagnetic fields with sharp spatial variations is strongly dependent on quantum electronic properties, even in ambient conditions, but difficult to access experimentally. We use propagating graphene plasmons, together with an engineered dielectric-metallic environment, to probe the graphene electron liquid and unveil its detailed electronic response at short wavelengths.The near-field imaging experiments reveal a parameter-free match with the full theoretical quantum description of the massless Dirac electron gas, in which we identify three types of quantum effects as keys to understanding the experimental response of graphene to short-ranged terahertz electric fields. The first type is of single-particle nature and is related to shape deformations of the Fermi surface during a plasmon oscillations. The second and third types are a many-body effect controlled by the inertia and compressibility of the interacting electron liquid in graphene. We demonstrate how, in principle, our experimental approach can determine the full spatiotemporal response of an electron system.Comment: 8 pages, 4 figure

    Electrical detection of hyperbolic phonon-polaritons in heterostructures of graphene and boron nitride

    Full text link
    Light properties in the mid-infrared can be controlled at a deep subwavelength scale using hyperbolic phonons-polaritons (HPPs) of hexagonal boron nitride (h-BN). While propagating as waveguided modes HPPs can concentrate the electric field in a chosen nano-volume. Such a behavior is at the heart of many applications including subdiffraction imaging and sensing. Here, we employ HPPs in heterostructures of h-BN and graphene as new nano-optoelectronic platform by uniting the benefits of efficient hot-carrier photoconversion in graphene and the hyperbolic nature of h-BN. We demonstrate electrical detection of HPPs by guiding them towards a graphene pn-junction. We shine a laser beam onto a gap in metal gates underneath the heterostructure, where the light is converted into HPPs. The HPPs then propagate as confined rays heating up the graphene leading to a strong photocurrent. This concept is exploited to boost the external responsivity of mid-infrared photodetectors, overcoming the limitation of graphene pn-junction detectors due to their small active area and weak absorption. Moreover this type of detector exhibits tunable frequency selectivity due to the HPPs, which combined with its high responsivity paves the way for efficient high-resolution mid-infrared imaging

    Thermoelectric detection and imaging of 1 propagating graphene plasmons

    Get PDF
    Controlling, detecting and generating propagating plasmons by all-electrical means is at the heart of on-chip nano-optical processing1, 2, 3. Graphene carries long-lived plasmons that are extremely confined and controllable by electrostatic fields4, 5, 6, 7; however, electrical detection of propagating plasmons in graphene has not yet been realized. Here, we present an all-graphene mid-infrared plasmon detector operating at room temperature, where a single graphene sheet serves simultaneously as the plasmonic medium and detector. Rather than achieving detection via added optoelectronic materials, as is typically done in other plasmonic systems8, 9, 10, 11, 12, 13, 14, 15, our device converts the natural decay product of the plasmon—electronic heat—directly into a voltage through the thermoelectric effect16, 17. We employ two local gates to fully tune the thermoelectric and plasmonic behaviour of the graphene. High-resolution real-space photocurrent maps are used to investigate the plasmon propagation and interference, decay, thermal diffusion, and thermoelectric generation.Peer ReviewedPostprint (author's final draft

    Near-field photocurrent nanoscopy on bare and encapsulated graphene

    Get PDF
    Opto-electronic devices utilizing graphene have already demonstrated unique capabilities, which are much more difficult to realize with conventional technologies. However, the requirements in terms of material quality and uniformity are very demanding. A major roadblock towards high-performance devices are the nanoscale variations of graphene properties, which strongly impact the macroscopic device behaviour. Here, we present and apply opto-electronic nanoscopy to measure locally both the optical and electronic properties of graphene devices. This is achieved by combining scanning near-field infrared nanoscopy with electrical device read-out, allowing infrared photocurrent mapping at length scales of tens of nanometers. We apply this technique to study the impact of edges and grain boundaries on spatial carrier density profiles and local thermoelectric properties. Moreover, we show that the technique can also be applied to encapsulated graphene/hexagonal boron nitride (h-BN) devices, where we observe strong charge build-up near the edges, and also address a device solution to this problem. The technique enables nanoscale characterization for a broad range of common graphene devices without the need of special device architectures or invasive graphene treatment

    Measurement and simulation of the fragmentation process at HERMES

    No full text

    Immunohistological detection of small particles of Echinococcus multilocularis and Echinococcus granulosus in lymph nodes is associated with enlarged lymph nodes in alveolar and cystic echinococcosis

    Get PDF
    BACKGROUND Alveolar (AE) and cystic echinococcosis (CE) in humans are caused by the metacestode of the tapeworms Echinococcus multilocularis and Echinococcus granulosus sensu lato (s.l.). Immunohistochemistry with the monoclonal antibodies (mAb) Em2G11, specific for AE, and the mAb EmG3, specific for AE and CE, is an important pillar of the histological diagnosis of these two infections. Our aim was to further evaluate mAb EmG3 in a diagnostic setting and to analyze in detail the localization, distribution, and impact of small particles of Echinococcus multilocularis (spems) and small particles of Echinococcus granulosus s.l. (spegs) on lymph nodes. METHODOLOGY/PRINCIPAL FINDINGS We evaluated the mAb EmG3 in a cohort of formalin-fixed, paraffin embedded (FFPE) specimens of AE (n = 360) and CE (n = 178). These samples originated from 156 AE-patients and 77 CE-patients. mAb EmG3 showed a specific staining of the metacestode stadium of E. multilocularis and E. granulosus s.l. and had a higher sensitivity for spems than mAb Em2G11. Furthermore, we detected spegs in the surrounding host tissue and in almost all tested lymph nodes (39/41) of infected patients. 38/47 lymph nodes of AE showed a positive reaction for spems with mAb EmG3, whereas 29/47 tested positive when stained with mAb Em2G11. Spegs were detected in the germinal centers, co-located with CD23-positive follicular dendritic cells, and were present in the sinuses. Likewise, lymph nodes with spems and spegs in AE and CE were significantly enlarged in size in comparison to the control group. CONCLUSIONS/SIGNIFICANCE mAb EmG3 is specific for AE and CE and is a valuable tool in the histological diagnosis of echinococcosis. Based on the observed staining patterns, we hypothesize that the interaction between parasite and host is not restricted to the main lesion since spegs are detected in lymph nodes. Moreover, in AE the number of spems-affected lymph nodes is higher than previously assumed. The enlargement of lymph nodes with spems and spegs points to an immunological interaction with the small immunogenic particles (spems and spegs) of Echinococcus spp

    Near-field photocurrent nanoscopy on bare and encapsulated graphene

    No full text
    et al.Optoelectronic devices utilizing graphene have demonstrated unique capabilities and performances beyond state-of-the-art technologies. However, requirements in terms of device quality and uniformity are demanding. A major roadblock towards high-performance devices are nanoscale variations of the graphene device properties, impacting their macroscopic behaviour. Here we present and apply non-invasive optoelectronic nanoscopy to measure the optical and electronic properties of graphene devices locally. This is achieved by combining scanning near-field infrared nanoscopy with electrical read-out, allowing infrared photocurrent mapping at length scales of tens of nanometres. Using this technique, we study the impact of edges and grain boundaries on the spatial carrier density profiles and local thermoelectric properties. Moreover, we show that the technique can readily be applied to encapsulated graphene devices. We observe charge build-up near the edges and demonstrate a solution to this issue.F.H.L.K. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the ‘Severo Ochoa’ Programme for Centres of Excellence in R&D (SEV-2015-0522), support by Fundacio Cellex Barcelona, the ERC Career integration grant (294056, GRANOP), the ERC starting grant (307806, CarbonLight), the Government of Catalonia trough the SGR grant (2014-SGR-1535), the Mineco grants Ramón y Cajal (RYC-2012-12281) and Plan Nacional (FIS2013-47161-P), and project GRASP (FP7-ICT-2013-613024-GRASP). F.H.L.K. and R.H. acknowledge support by the E.C. (European Commission) under Graphene Flagship (contract no. CNECT-ICT604391). D.J. acknowledges support from the Ramón y Cajal Fellowship Program. Y.G. and J.H. acknowledge support from the US Office of Naval Research N00014-13-1-0662. We acknowledge financial support from the Spanish Ministry of Economy and Competitiveness and ‘Fondo Europeo de Desarrollo Regional’ through Grant TEC2013-46168-R. Q.M. and P.J.-H. have been supported by AFOSR Grant No. FA9550-11-1-0225 and the Packard Fellowship program. This work made use of the Materials Research Science and Engineering Center Shared Experimental Facilities supported by the National Science Foundation (NSF) (Grant No. DMR-0819762) and of Harvard’s Center for Nanoscale Systems, supported by the NSF (Grant No. ECS-0335765). S.R. acknowledges the Spanish Ministry of Economy and Competitiveness for funding (MAT2012-33911), the Secretaria de Universidades e Investigacion del Departamento de Economia y Conocimiento de la Generalidad de Catalunya and the Severo Ochoa Program (MINECO SEV-2013-0295). J.E.B.-V. acknowledges support from SECITI (Mexico, D.F.).Peer Reviewe
    corecore