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Near-field photocurrent nanoscopy on bare and
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Optoelectronic devices utilizing graphene have demonstrated unique capabilities and

performances beyond state-of-the-art technologies. However, requirements in terms of

device quality and uniformity are demanding. A major roadblock towards high-performance

devices are nanoscale variations of the graphene device properties, impacting their

macroscopic behaviour. Here we present and apply non-invasive optoelectronic nanoscopy to

measure the optical and electronic properties of graphene devices locally. This is achieved by

combining scanning near-field infrared nanoscopy with electrical read-out, allowing infrared

photocurrent mapping at length scales of tens of nanometres. Using this technique, we study

the impact of edges and grain boundaries on the spatial carrier density profiles and local

thermoelectric properties. Moreover, we show that the technique can readily be applied to

encapsulated graphene devices. We observe charge build-up near the edges and demonstrate

a solution to this issue.
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A
s large scale integration and wafer scale device processing
capabilities of graphene have become available1–8,
technological implementations of electronic and

optoelectronic graphene devices are within reach9–11. At the
same time, to achieve high device performance, any imperfections
at the nanometer or even atomic scale need to be minimized
or even eliminated. For example, in large area graphene, grown
by chemical vapour deposition (CVD), grain boundaries are
the stitching regions between different monocrystalline parts
of graphene and act as carrier scatterers, limiting the graphene
mobility and uniformity12,13. In addition, even perfectly
monocrystalline graphene is still highly sensitive to its
environment, and on typical substrates charge–density
inhomogeneities (charge puddles)14–19 and additional doping
near contacts, defects and edges arise, which reduce the device
performance as well. Therefore, it is important to efficiently probe
the nanoscale optoelectronic properties of graphene devices and
to understand their microscopic physical behaviour.

A major challenge is that many of the available characterization
techniques are invasive20, need specifically designed device
structures13,21,22, image only very small areas14,15,21,23–25, rely
on high doping of the graphene,26 require unhindered electrical
access of the probe to the graphene14,15,21,23,24 or lack the desired
nanometer resolution27 and are expensive and difficult to
implement. For the direct quality control of graphene devices, a
method that can image electrical and optical properties of
graphene devices, at nanoscale resolution, without any special
preparation and without modifying the devices is required.

Here we demonstrate fully non-invasive room-temperature
scanning near-field photocurrent nanoscopy28–38 for the first
time applied on graphene with infrared frequencies and use it to
study the nanoscale optoelectronic properties of graphene
devices that can later be used for real applications. This
technique is based on electrical probing of the photoresponse
due to strongly localized heating. We apply this technique
to study the microscopic physics of grain boundaries and
charge–density inhomogeneities. In the case of grain
boundaries, we were able to identify the magnitude of their
Seebeck coefficient, while for charge–density inhomogeneities, we
show how they influence the global charge neutrality point of
graphene devices. In addition, we study encapsulated graphene
devices39,40, where the encapsulation would prevent many other
scanning probe techniques from accessing local properties of
graphene. In these devices, we find a charge build-up near the
edges and show that using local metal gates instead of a global
backgate effectively suppresses this type of edge doping.
In general, this technique operates most effectively with
mid-infrared light because it does not lead to photodoping41

and it is more stable in operation, compared with visible light.

Results
Measurement principle. The measurement principle is sketched
in Fig. 1a. The setup is based on a scattering-type scanning
near-field optical microscope (s-SNOM)26,42 augmented with
electrical contact to the sample to measure currents in situ28–38.
In contrast to conventional s-SNOM, we do not need to measure
the outscattered light but rather directly measure current induced
by the near-field as explained in the following. A 10.6-mm
mid-infrared laser illuminates a metallized atomic force
microscope probe, tapping at its mechanical resonance
frequency. Part of the incoming light, polarized parallel to the
shaft of the probe, excites a strong electric field at the tip apex due
to an antenna effect43. The spatial extent of this near-field is on
the order of 25 nm, limited only by the tip radius and much
smaller than the free space wavelength of the impinging light43.

The near and far fields impinging on the device induce charge
flows in the device (by mechanisms discussed below), and drive
currents into an external current amplifier via contacts on the
device. We isolate the part of the current that is induced by near
fields by demodulating the current at the second harmonic of the
tip tapping frequency43. This demodulated current is denoted
IPC and referred to as near-field photocurrent and is obtained
together with near-field optical and topography information.
A typical map of IPC, obtained by scanning the tip over a CVD
graphene device, is shown in Fig. 1b.

We can assess the spatial resolution of the photocurrent maps
by comparing a region near the edge (Fig. 1d) with a topographic
image from the same region (Fig. 1c). As can be seen, IPC falls to
zero for tip locations away from the graphene on a similar length
scale as the topography, demonstrating the successful isolation of
near-field contributions. In Fig. 1e, we quantify the resolution by
observing the change in IPC as the tip is moved over the edge of
graphene. The full-width at half maximum of the photocurrent
peak at this location is B100 nm, matching the rise distance in
the topographic signal. This resolution is far below any limits
relating to the 10.6 mm free space light wavelength.

Photothermoelectric photocurrent generation mechanism. As
to the physical mechanism of the photocurrent, we consider
the photothermoelectric effect that has been shown to dominate
the photoresponse of graphene11,44–48: the light (in this case, the
tip-enhanced near-field) locally heats the graphene, and this heat
acts via non-uniformities in Seebeck coefficient S to drive charge
currents within the device and into the contacts (see Methods
section). Therefore, we interpret the variations of IPC in terms of
microscopic variations in S. The Seebeck coefficient, which
depends on material properties such as carrier density and
mobility, is a measure of the electromotive force driven by a
temperature difference in a material. A complete description of
IPC needs to take into account the carrier cooling length45,46

and overall sample geometry49. The carrier cooling length
lcool ¼

ffiffiffiffiffiffiffiffi
k=g

p
, where k the sheet thermal conductivity in

plane and g the interfacial thermal conductivity out of plane to
the heat sinking substrate, describes how far heat propagates
through the charge carriers, before dissipating to the environment
(see Supplementary Fig. 2)46. A quantitative model of
the thermoelectric photocurrent mechanism can be found in
the Methods section.

Grain boundary characterization. We first discuss the
application of this infrared near-field photocurrent technique to
grain boundaries. They are not visible in the simultaneously
acquired topography, and are responsible for some of the
line-shaped features in the photocurrent map in Fig. 1b. Some of
the other features stem from large scale inhomogeneities of the
sample. The region within the green frame is shown with higher
resolution in Fig. 1d, exhibiting a strong photocurrent signal
that changes sign along a sharp boundary, yet the graphene is
topographically flat in the vicinity of this boundary (Fig. 1c). We
show now that this type of feature indicates a grain boundary.

Figure 2a shows a line profile of IPC across the boundary
feature identified in Fig. 1d. This antisymmetric IPC can be
explained by a localized deviation in S at the boundary, that is, a
line defect within an otherwise uniform thermoelectric
medium (Supplementary Figs 3,4 and Supplementary Note 1).
Indeed, grain boundaries behave as localized lines of strongly
modified electronic properties, within otherwise uniform
graphene20,21,26,50,51. We remark that the decay of the
photocurrent away from the boundary extends over more than
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100 nm, which is due to a larger hot carrier cooling. We find in
this case lcool¼ 140 nm.

To gain more insight in the Seebeck coefficient at the grain
boundary, we tune the carrier density by a global gate (Fig. 2d).
We observe that the antisymmetric spatial photocurrent profile
changes sign as the backgate voltage VBG passes the peak in
resistance, that is, the global charge neutrality point VD.
The Seebeck coefficient SG of graphene itself changes sign at
the charge neutrality point44,45,52,53 (Fig. 2c). Thus, after
calibrating the sign to the known sign of the contact
photocurrent, our data implies that the Seebeck coefficient of
the grain boundary SGB is always smaller in magnitude than SG,
since IPC(VBG)pSG(VBG)� SGB(VBG).

Using a polycrystalline graphene model, we compute the
resistance due to grain boundaries using a Kubo transport
formalism and real space simulations54. SGB is the ratio of the
first- and zero-order Onsager coefficients (Supplementary
Note 2). Indeed, we find that SGB is always smaller in
magnitude and has a similar lineshape as SG in the carrier
density range measured (Fig. 2c). Figure 2e shows a simulation of
the photocurrent for the calculated Seebeck coefficients, which is
in agreement with the measurements (Supplementary Figs 5,6).

Charge puddle characterization. We next examine near-field
photocurrent in a typical two-probe exfoliated graphene device
(Fig. 3). A strong photocurrent is obtained with the tip near the
metal contacts, similar to previous near- and far-field measure-
ments34,47,55. In addition, an apparently random pattern of
photocurrent is present throughout the device, as in high-
resolution far-field measurements55 but at a much finer scale.

The random photocurrent pattern between the contacts in
Fig. 3a indicates random variations in Seebeck coefficient over

short length scales (Supplementary Fig. 7). Random variations of
the Seebeck coefficient are indeed expected since it depends on
carrier density52, which in turn has fine-scaled inhomogeneities
(charge puddles)14–18. The photocurrent variations can thus be
used to gain insight in the charge puddle distribution. A more
detailed view of the photocurrent due to charge puddles in Fig. 3b
shows that the length scale that can be resolved is on the order of
hundreds of nanometres.

Quantitatively, from the autocorrelation of the photocurrent in
comparison with a photothermoelectric model taking into
account the size of the charge puddles in Fig. 3c we extract
lcoolB200 nm. The charge puddles are modelled to have a size of
B20 nm, in accordance with measurements of graphene on
silicon oxide (SiO2; refs 15–18).

By changing the gate voltage we study the carrier density
profile with high spatial resolution (Fig. 4) and highlight the
possibility of spatially resolving the charge neutrality point for a
large device. IPC from charge puddles is largest around the charge
neutrality point and varies with position. This is consistent with
the very high sensitivity of the Seebeck coefficient to changes in
carrier density, near-zero density (Fig. 4b). The magnitude of
photocurrent from charge puddles depends on the difference of
Seebeck coefficient between two adjacent charge puddles or in
other words the strongest photocurrent from charge puddle
appears at the position of highest Seebeck gradient. This allows us
to map the local carrier density offset (charge inhomogeneity)
throughout the device, as indicated by the extremum of photo-
current in a scan of photocurrent versus gate voltage (Fig. 4c). The
photocurrent from adjacent charge puddles with a given charge
carrier density offset does not change sign when sweeping through
the charge neutrality point. This is because the difference in
Seebeck coefficient between these puddles does not change sign.
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Figure 1 | Near-field photocurrent working principle and photocurrent from grain boundaries. (a) Sketch of the scattering-type scanning near-field

optical microscope setup. A mid-infrared laser illuminates the atomic force microscope tip, which generates a locally concentrated optical field, which is

absorbed by the graphene generating a position dependent photocurrent. The blue region in the graphene lattice represents a grain boundary with a

modified Seebeck coefficient. The arrows sketch the photocurrent flow pattern. For each position only the magnitude and direction of the current are

measured. The sketch is not to scale. (b) IPC map at at backgate voltage VBG¼0 V of a single layer CVD graphene device (Supplementary Fig. 1) with three

contacts: top left (drain), right (source) and bottom left (ground). Both grain boundaries and wrinkles show characteristic photocurrent patterns. (scale bar,

5 mm) The green box indicates the measurement region in c,d. (c) Topography of etched CVD graphene does not show grain boundary but only wrinkles

and other inhomogeneities due to the transfer process. (scale bar, 500 nm) (d) IPC at VBG¼0 V clearly shows a grain boundary and the expected sign

change around it. The black dashed line indicates the measurement positions in Fig. 2a,d. (scale bar, 500 nm) (e) Topography (orange) and IPC (red)

measured at the orange line in c and the red line in d, respectively.
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We can thus resolve the local charge neutrality point at a given
position of the device (green curve, Fig. 4a), which can be
different from the global charge neutrality point VD, the backgate
voltage VBG at which the resistance is maximum (blue curve,
Fig. 4a). We show that the global charge neutrality point (blue
curve, Fig. 4a) is determined by an average of the gate voltages at
which the local charge neutrality points appear (red curve,
Fig. 4a). Spatially resolved puddle photocurrent can be much
narrower (green curve, Fig. 4a) than the average of all possible
current paths (red curve, Fig. 4a) This indicates that the graphene
locally has less inhomogeneity. Thus the technique gives insight
not only in the global but also in the local behaviour of the device.

Characterization of encapsulated devices. Finally, we apply this
technique to a graphene device encapsulated between two layers
of hexagonal boron nitride (h-BN), using the polymer-free van
der Waals assembly technique39,40 as sketched in Fig. 5e. This
device lies on top of an oxidized silicon wafer, used as a backgate.
The stack is etched into a triangle and electrically side-contacted
by two metal contacts39. Recent studies in vacuum and low
temperatures56,57 have shown that the edges affect where current
flows in the device, in particular near charge neutrality. In the
following we study the build-up of edge doping in ambient
conditions and provide a solution to this.

While monitoring the photocurrent of such encapsulated
devices, we observe indications of strong carrier density variations
near the edges over micrometre scales. These variations are
influenced by lighting conditions (Supplementary Fig. 8), gate
voltages, and temperature, and evolve over timescales ranging
from minutes to weeks. As an example, Fig. 5a–d shows a
progression of photocurrent maps, taken after annealing the
device at 200 �C for 30 min in ambient conditions to temporarily
remove charge density variations near the edges. Initially in
Fig. 5a we see very small photocurrents indicating a flat carrier
density landscape. After some time (hours), in the dark with only
gate voltages smaller than 3 V applied, a small doping gradient
between the contacts builds up. This gradient leads to the
stronger photocurrent shown in Fig. 5b. The local charge
neutrality point, indicated by the maximum of photocurrent, is
at the same position close to the edge of the device as further
inside the bulk. After keeping the device for 3 h in ambient
conditions we can see a change of the local charge neutrality point
at the edge of the graphene compared to the bulk in Fig. 5c.
The edge is slightly more p-type compared to the bulk. Finally, we
apply high gate voltages, of in this case 50 V for B20 h, to
increase the edge doping. A strong p-doping at the edge and an
n-doping in the bulk of the graphene is induced in Fig. 5d. This
indicates that electric field accelerates the speed and increases this
type of edge doping.

We exploit the observed edge doping to create a natural
p–n junction along the edge of the device. For this we
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Figure 2 | Photocurrent profile at a grain boundary and its gate voltage

dependence. (a) Photocurrent profile, measured at the black dashed line in

Fig. 1d, perpendicular to the grain boundary at VBG¼0 V shows good

agreement with the photothermoelectric model with lcool¼ 140 nm. The

modelled spatial Seebeck profile (with FWHM 20 nm) is shown in black.

(b) Two-probe device resistance as a function of VBG. (c) Simulated

Seebeck coefficient SG for pristine graphene (solid line) and SGB for

polycrystalline graphene with an average grain size of 25 nm (dashed line;

Supplementary Note 2). (d) Backgate dependent photocurrent profile

perpendicular to the grain boundary shows that the grain boundary changes

its sign at the charge neutrality point. (e) Simulated backgate dependent

photocurrent profile based on the Seebeck profiles in c normalized to the

simulated photocurrent maximum.
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apply a backgate voltage at which the edge of the graphene
is p-type and the bulk n-type. This is similar to the situation
in Fig. 5d at VBG¼VD. We observe photocurrent at the junction
in Fig. 5f around the whole device, indicating that the
edge doping is uniform around the graphene. The photocurrent
decays gradually towards the midline between the electrodes
as a result of how the triangular geometry modifies the

ability of the contacts to capture photocurrents49. The sign
change in the middle of the device is because in the current
direction the junction changes from a p–n junction to an
n–p junction (Supplementary Fig. 9 and Supplementary
Note 2). We are able to temporarily reset the edge doping by
annealing the device on a hotplate at 200 �C for 30 min as we
show in Fig. 5a.
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Local gates prevent charge build-up at the device edges. While
we have not been able to precisely identify the origin of the
edge doping, we suspect that water molecules are able to
penetrate between the boron nitride and the SiO2 due to the
surface of the h-BN being not completely conformal with the
underlying SiO2 substrate. This water molecule penetration
then leads to trapped charges is responsible for the observed
edge doping. We also present here a technique to completely
eliminate the edge doping. We place encapsulated graphene on
top of a local conductive gate, such as a 15 nm AuPd alloy
sketched in Fig. 6a. As the photocurrent measurement in Fig. 6b
shows, we find that edge doping is efficiently suppressed
even after extended periods of time at ambient conditions and
high gate voltages. Furthermore, such devices efficiently
suppress the photodoping effect observed for devices where the
h-BN is in contact with SiO2 (ref. 41; Supplementary Fig. 10 and
Supplementary Note 1).

In the device with a local metal gate used to suppress both
edge- and photodoping, we find small features due to charge
puddles on top of a slowly varying background photocurrent, due
to large-scale carrier density inhomogeneities. The size of the
features due to charge puddles determined by autocorrelation is
B800 nm. The long length scale of those features is either due to
the longer cooling length of the encapsulated graphene compared
to the graphene on SiO2 or due to larger charge puddle size in the
encapsulated devices. Further work is required to clearly
distinguish these effects.

Discussion
To conclude, we have demonstrated that scanning near-field
photocurrent nanoscopy is a versatile technique to characterize
the electronic and optoelectronic and even previously inaccessible
properties of relevant graphene devices. This technique is highly
promising for spatially resolved quality control of regular
graphene devices without the need for special device structures
and can therefore be readily applied.

Methods
Photocurrent model. Photocurrent IPC in graphene as generated by the
photothermoelectric effect and is described as:45–47

IPC ¼
1

RW

Z Z
@T
@x

S dxdy ð1Þ

where R is the total resistance including graphene, contacts and circuitry, W the
device width and x the current flow direction. This is valid for rectangular graphene
devices and special care needs to be taken for arbitrary shapes, such as in Fig. 5
(ref. 49). For the temperature profile T(x) we consider that the heat spreads in two
dimensions with heat sinking to lattice and substrate, producing a T(x) profile
described by a modified Bessel function of the second kind, with a finite tip size
correction (Supplementary Note 2). A 25-nm finite tip-size correction was used for
all simulations.

Measurement details. The s-SNOM used was a NeaSNOM from Neaspec GmbH,
equipped with a CO2 laser operated at 10.6 mm, away from the phonon resonance
of SiO2, which can lead to strong substrate contributions to the photocurrent48.
The laser power used was B20 mW. The probes were commercially available
metallized atomic force microscopy probes with an apex radius of approximately
25 nm. The tip height was modulated at a frequency of approximately 250 kHz with
a 60–80 nm amplitude. A Femto DLPCA-200 current pre-amplifier was used. The
probe tip was electrically grounded. Because of the different device geometries and
the fact that all the measurements were taken at different times and slightly
different device conditions the absolute values of the photocurrents are not
comparable.

Device fabrication. The CVD graphene, grown on copper, was transferred onto a
self-assembled monolayer58 on 285 nm of SiO2 to stabilize the charge neutrality
point. The contacts were defined using optical lithography with Ti (5 nm)/Pd
(35 nm). The graphene was transferred onto deposited contacts.

The exfoliated graphene device was fabricated on a Si/SiO2(300 nm) wafer, used
as backgate. The Cr(0.8 nm)/Au(80 nm) contacts were defined using electron beam
lithography.

The Si/SiO2(300 nm)/h-BN(46 nm)/Graphene/h-BN(7 nm) and the
Si/SiO2(300 nm)/AuPd(15 nm)/h-BN(42 nm)/Graphene/h-BN(13 nm) stacks, were
fabricated using the polymer-free van der Waals assembling technique39.
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