13 research outputs found

    Education and ICT-based self-regulation in learning: Theory, design and implementation

    Full text link

    Protein kinase C-related kinase 2 phosphorylates the protein synthesis initiation factor eIF4E in starfish oocytes

    Get PDF
    Phosphorylation of eIF4E is required for protein synthesis during starfish oocyte maturation. The activity of protein kinase C-related kinase 2 (PRK2) increases prior to the phosphorylation of eIF4E (G. Stapleton et al., 1998, Dev. Biol. 193, 34–46). We investigate here whether eIF4E is activated by PRK2. A 3.5-kb eIF4E clone isolated from starfish cDNA is 57% identical to human eIF4E and contains the putative phosphorylation site serine-209. The serine-209 environment (SKTGS209MAKSRF) is similar to the consensus sequence of the phosphorylation site of protein kinase C and related kinases. A starfish eIF4E fusion protein (GST-4E) was phosphorylated in vitro by PRK2 in the presence of 1,2-diolyl-sn-glycerol 3-phosphate. In contrast, replacing the GST-4E serine-209 with an alanine significantly reduced this phosphorylation. Analysis by two-dimensional phosphopeptide mapping reveals a major phosphopeptide in trypsin-digested GST-4E, but not in its serine-209 mutant. Importantly, this major phosphopeptide in GST-4E corresponds to a major phosphopeptide of eIF4E isolated from 32P-labeled oocytes. Thus, PRK2 may regulate translation initiation during oocyte maturation by phosphorylating the serine-209 residue of eIF4E in starfish. We also demonstrate that high levels of cAMP inhibit the activation of PRK2, eIF4E, and the eIF4E binding protein during starfish oocyte maturation, while PI3 kinase activates these proteins

    Phosphorylation of protein kinase C-related kinase PRK2 during meiotic maturation of starfish oocytes

    Get PDF
    The resumption of meiosis in the developing starfish oocyte is the result of intracellular signaling events initiated by 1-methyladenine stimulation. One of the earliest detectable kinase activities during meiotic maturation of starfish oocytes is a protein kinase C or PKC-like activity. In this study, several isoforms of protein kinase C were cloned from the oocyte; however, the most abundant PKC-like maternal transcript corresponds to protein kinase C-related kinase 2 (PRK2). PRK2 is expressed in the immature oocyte and at least until germinal vesicle breakdown. Subcellular localization of PRK2 revealed a cytoplasmic distribution in the immature oocyte, which, during meiotic maturation, remained in the cytoplasm but also localized to the disintegrating germinal vesicle. Significantly, PRK2 is phosphorylatedin vivoin response to 1-methyladenine which precedes MPF activation, making PRK2 a candidate regulator of early signaling events of meiotic maturation

    Arthur H. Whiteley (1916–2013)

    No full text

    TRANSLATION OF THE GENETIC MESSAGE, II. EFFECT OF INITIATION FACTORS ON THE BINDING OF FORMYL-METHIONYL-TRNA TO RIBOSOMES

    Get PDF
    It has been shown1 that in a cell-free system of protein synthesis from Escherichia coli, containing ribosomes purified by O-(diethylaminoethyl) cellulose (DEAEcellulose) chromatography, two factors (F1 and-F2) usually- removed during the purification of the ribosomes are required for the translation of natural messengers such as MS2 phage RNA. Polypeptide synthesis with some synthetic messengers (e.g., poly A) does not require these factors. However, with synthetic oligonucleotides having an AUG codon as the first or second triplet from the 5'-terminus, the incorporation of methionine and other amino acids into acid-insoluble products, as well as the transfer of methionine from met-tRNAF2 into peptide linkage, is markedly stimulated by the factors. On the other hand, methionine from mettRNAM is not transferred into peptide linkage, with oligonucleotide messengers having an initial AUG codon, whether in the absence or presence of factors.Aided by grants AM-01845, AM-08953, and FR-05399 from the National Institutes of Health, U.S. Public Health Service, the Jane Coffin Childs Fund for Medical Research, and E. I. dii Pont de Nemours and Company, Inc.Peer reviewe

    Activity and Distribution of Paxillin, Focal Adhesion Kinase, and Cadherin Indicate Cooperative Roles during Zebrafish Morphogenesis

    No full text
    We investigated the focal adhesion proteins paxillin and Fak, and the cell-cell adhesion protein cadherin in developing zebrafish (Danio rerio) embryos. Cadherins are expressed in presomitic mesoderm where they delineate cells. The initiation of somite formation coincides with an increase in the phosphorylation of Fak, and the accumulation of Fak, phosphorylated Fak, paxillin, and fibronectin at nascent somite boundaries. In the notochord, cadherins are expressed on cells during intercalation, and phosphorylated Fak accumulates in circumferential rings where the notochord cells contact laminin in the perichordal sheath. Subsequently, changes in the orientations of collagen fibers in the sheath suggest that Fak-mediated adhesion allows longitudinal expansion of the notochord, but not lateral expansion, resulting in notochord elongation. Novel observations showed that focal adhesion kinase and paxillin concentrate at sites of cell-cell adhesion in the epithelial enveloping layer and may associate with actin cytoskeleton at epithelial junctions containing cadherins. Fak is phosphorylated at these epithelial junctions but is not phosphorylated on Tyr(397), implicating a noncanonical mechanism of regulation. These data suggest that Fak and paxillin may function in the integration of cadherin-based and integrin-based cell adhesion during the morphogenesis of the early zebrafish embryo

    Urine metabolomics reveals novel physiologic functions of human aldehyde oxidase and provides biomarkers for typing xanthinuria

    No full text
    Classical xanthinuria is a rare inherited metabolic disorder caused by either isolated xanthine dehydrogenase (XDH) deficiency (type I) or combined XDH and aldehyde oxidase (AO) deficiency (type II). XDH and AO are evolutionary related enzymes that share a sulfurated molybdopterin cofactor. While the role of XDH in purine metabolism is well established, the physiologic functions of AO are mostly unknown. XDH and AO are important drug metabolizing enzymes. Urine metabolomic analysis by high pressure liquid chromatography and mass spectrometry of xanthinuric patients was performed to unveil physiologic functions of XDH and AO and provide biomarkers for typing xanthinuria. Novel endogenous products of AO, hydantoin propionic acid, N1-methyl-8-oxoguanine and N-(3-acetamidopropyl) pyrrolidin-2-one formed in the histidine, nucleic acid and spermidine metabolic pathways, respectively, were identified as being lowered in type II xanthinuria. Also lowered were the known AO products, N1-methyl-2-pyridone-5-carboxamide and N1-methyl-4-pyridone-5-carboxamide in the nicotinamide degradation pathway. In contrast to the KEGG annotations, the results suggest minor role of human AO in the conversion of pyridoxal to pyridoxate and gentisaldehyde to gentisate in the vitamin B6 and tyrosine metabolic pathways, respectively. The perturbations in purine degradation due to XDH deficiency radiated further from the previously known metabolites, uric acid, xanthine and hypoxanthine to guanine, methyl guanine, xanthosine and inosine. Possible pathophysiological implications of the observed metabolic perturbations are discussed. The identified biomarkers have the potential to replace the allopurinol-loading test used in the past to type xanthinuria, thus facilitating appropriate pharmacogenetic counseling and gene directed search for causative mutations
    corecore