866 research outputs found

    Deduction of the quantum unmbers of low-lying states of the (e+e+e-e-) system from symmetry consideration

    Full text link
    The feature of the low-lying spectrum and a complete set of quantum numbers of the (e+e+e-e-) system have been deduced based on symmetry consideration. The existence of a low odd-parity L=1 excited state with the spins of the two electrons coupled to s1=1 and the two positrons coupled to s2=0 (or s1=0 and s2=1) and a low even-parity L=0 excited state with s1=s2=1 have been predicted. The discussion is generalized to 2-dimensional (e+e+e-e-) systems.Comment: 12 pages, 5 tables, no figure

    On axially symmetrical solitons in Abelian-Higgs models

    Full text link
    A numerical search for bosonic superconducting static vortex rings in a U(1)A×U(1)WU(1)_{A}\times U(1)_{W} model is presented. The fate of these rings without current, is to shrink due to their tension until extinction. The superconductivity of the loop does not seem to prevent shrinking. Current quenching takes place before stabilization.Comment: 15 pages, 8 figures, Accepted for publication in Physica

    Observed flux density enhancement at submillimeter wavelengths during an X-class flare

    Full text link
    We analyse the 30 October, 2004, X1.2/SF solar event that occurred in AR 10691 (N13 W18) at around 11:44 UT. Observations at 212 and 405 GHz of the Solar Submillimeter Telescope (SST), with high time resolution (5 ms), show an intense impulsive burst followed by a long-lasting thermal phase. EUV images from the Extreme Ultraviolet Imaging Telescope (SOHO/EIT) are used to identify the possible emitting sources. Data from the Radio Solar Telescope Network (RSTN) complement our spectral observations below 15 GHz. During the impulsive phase the turnover frequency is above 15.4 GHz. The long-lasting phase is analysed in terms of thermal emission and compared with GOES observations. From the ratio between the two GOES soft X-ray bands, we derive the temperature and emission measure, which is used to estimate the free-free submillimeter flux density. Good temporal agreement is found between the estimated and observed profiles, however the former is larger than the latter.Comment: 13 pages, 7 figure

    Theory of unitarity bounds and low energy form factors

    Full text link
    We present a general formalism for deriving bounds on the shape parameters of the weak and electromagnetic form factors using as input correlators calculated from perturbative QCD, and exploiting analyticity and unitarity. The values resulting from the symmetries of QCD at low energies or from lattice calculations at special points inside the analyticity domain can beincluded in an exact way. We write down the general solution of the corresponding Meiman problem for an arbitrary number of interior constraints and the integral equations that allow one to include the phase of the form factor along a part of the unitarity cut. A formalism that includes the phase and some information on the modulus along a part of the cut is also given. For illustration we present constraints on the slope and curvature of the K_l3 scalar form factor and discuss our findings in some detail. The techniques are useful for checking the consistency of various inputs and for controlling the parameterizations of the form factors entering precision predictions in flavor physics.Comment: 11 pages latex using EPJ style files, 5 figures; v2 is version accepted by EPJA in Tools section; sentences and figures improve

    Localized Fermions and Anomaly Inflow via Deconstruction

    Get PDF
    We study fermion localization in gauge theory space. We consider four dimensional product gauge groups in which light chiral fermions transform under different gauge factors of the product group. This construction provides a suppression of higher dimensional operators. For example, it can be used to suppress dangerous proton decay operators. The anomalies associated with the light chiral fermions are compensated by Wess-Zumino terms, which in the continuum limit reproduce the five dimensional Chern-Simons term.Comment: 12 pages, minor changes to section

    Long Range Magnetic Order and the Darwin Lagrangian

    Full text link
    We simulate a finite system of NN confined electrons with inclusion of the Darwin magnetic interaction in two- and three-dimensions. The lowest energy states are located using the steepest descent quenching adapted for velocity dependent potentials. Below a critical density the ground state is a static Wigner lattice. For supercritical density the ground state has a non-zero kinetic energy. The critical density decreases with NN for exponential confinement but not for harmonic confinement. The lowest energy state also depends on the confinement and dimension: an antiferromagnetic cluster forms for harmonic confinement in two dimensions.Comment: 5 figure

    Stringent constraints on the scalar K pi form factor from analyticity, unitarity and low-energy theorems

    Get PDF
    We investigate the scalar K pi form factor at low energies by the method of unitarity bounds adapted so as to include information on the phase and modulus along the elastic region of the unitarity cut. Using at input the values of the form factor at t=0 and the Callan-Treiman point, we obtain stringent constraints on the slope and curvature parameters of the Taylor expansion at the origin. Also, we predict a quite narrow range for the higher order ChPT corrections at the second Callan-Treiman point.Comment: 5 pages latex, uses EPJ style files, 3 figures, replaced with version accepted by EPJ

    Mild parenchymal lung disease and/or low diffusion capacity impacts survival and treatment response in patients diagnosed with idiopathic pulmonary arterial hypertension

    Get PDF
    There are limited published data defining survival and treatment response in patients with mild lung disease and/or reduced gas transfer who fulfil diagnostic criteria for idiopathic pulmonary arterial hypertension (IPAH). Patients diagnosed with IPAH between 2001–19 were identified in the ASPIRE registry. Using pre-specified criteria based on CT imaging and spirometry, patients with a diagnosis of IPAH and no lung disease were termed IPAHno-LD (n=303), and those with minor-mild emphysema or fibrosis were described as IPAHmild-LD (n=190). Survival was significantly better in IPAHno-LD than in IPAHmild-LD (1 and 5-year survival 95% and 70% versus 78% and 22% respectively, p<0.0001). In the combined group of IPAHno-LD and IPAHmild-LD, independent predictors of higher mortality were increasing age, lower DLCO, lower exercise capacity and a diagnosis of IPAHmild-LD (p all <0.05). Exercise capacity and quality of life improved (p both <0.0001) following treatment in patients with IPAHno-LD but not IPAHmild-LD. A proportion of patients with IPAHno-LD had a DLCO <45%; these patients had poorer survival than patients with DLCO ≥45% although demonstrated improved exercise capacity following treatment. The presence of even mild parenchymal lung disease in patients who would be classified as IPAH according to current recommendations has a significant adverse effect on outcomes. This phenotype can be identified using lung function testing and clinical CT reports. Patients with IPAH, no lung disease and severely reduced DLCO may represent a further distinct phenotype. These data suggest that RCTs of targeted therapies in patients with these phenotypes are required

    Implications of unitarity and analyticity for the D\pi form factors

    Full text link
    We consider the vector and scalar form factors of the charm-changing current responsible for the semileptonic decay D\rightarrow \pi l \nu. Using as input dispersion relations and unitarity for the moments of suitable heavy-light correlators evaluated with Operator Product Expansions, including O(\alpha_s^2) terms in perturbative QCD, we constrain the shape parameters of the form factors and find exclusion regions for zeros on the real axis and in the complex plane. For the scalar form factor, a low energy theorem and phase information on the unitarity cut are also implemented to further constrain the shape parameters. We finally propose new analytic expressions for the DπD\pi form factors, derive constraints on the relevant coefficients from unitarity and analyticity, and briefly discuss the usefulness of the new parametrizations for describing semileptonic data.Comment: 10 pages, 7 figures, uses EPJ style files: expanded version of v1 with extended discussion, additional analysis, explanation, figure and references; corresponds to EPJA versio
    corecore