10,407 research outputs found

    Spatial mode control and advanced methods for multi-platform quantum communication

    Get PDF
    Though state-of-the-art quantum computers are currently limited to only a handful of physical qubits, a quantum computer large enough to perform prime factorization of modern cryptographic keys, quantum simulation, and quantum-enhanced searching algorithms will likely become viable within a few decades. Such computers demand communication networks that preserve the qualities of the quantum states used as inputs and outputs; they also herald the end of the flavors of classical cryptography reliant on the complexity of factoring large numbers. As a result, future networks must include channels which preserve the states of single photons over useful distances (e.g., using quantum repeaters), and must deploy quantum-safe cryptography to ensure the safety of classical information passing over the network. Here we discuss strategies affecting several areas of a future quantum-enabled network: first, we demonstrate a technique for adaptively coupling single photons from point sources into single-mode optical fiber and apply the technique to coupling from quantum dots (a popular candidate for a future quantum repeater); secondly, we discuss various methods for simulating the effects of atmospheric turbulence on quantum cryptographic protocols in the laboratory, critical for understand the challenges facing free-space implementations of quantum communication. Thirdly, we demonstrate a technique that enables quantum cryptographic networks over free space channels to function in the presence of strong atmospheric turbulence using a multi-aperture receiver. Finally, we discuss our efforts to miniaturize a quantum key distribution system and operate a key distribution channel between flying multirotor drones

    Barrier infrared detector

    Get PDF
    A superlattice-based infrared absorber and the matching electron-blocking and hole-blocking unipolar barriers, absorbers and barriers with graded band gaps, high-performance infrared detectors, and methods of manufacturing such devices are provided herein. The infrared absorber material is made from a superlattice (periodic structure) where each period consists of two or more layers of InAs, InSb, InSbAs, or InGaAs. The layer widths and alloy compositions are chosen to yield the desired energy band gap, absorption strength, and strain balance for the particular application. Furthermore, the periodicity of the superlattice can be "chirped" (varied) to create a material with a graded or varying energy band gap. The superlattice based barrier infrared detectors described and demonstrated herein have spectral ranges covering the entire 3-5 micron atmospheric transmission window, excellent dark current characteristics operating at least 150K, high yield, and have the potential for high-operability, high-uniformity focal plane arrays

    Quantum tunneling of superconducting string currents

    Full text link
    We investigate the decay of current on a superconducting cosmic string through quantum tunneling. We construct the instanton describing tunneling in a simple bosonic string model, and estimate the decay rate. The tunneling rate vanishes in the limit of a chiral current. This conclusion, which is supported by a symmetry argument, is expected to apply in general. It has important implications for the stability of chiral vortons.Comment: 16 pages, 2 figure

    Freezing by Monte Carlo Phase-Switch

    Full text link
    We describe a Monte Carlo procedure which allows sampling of the disjoint configuration spaces associated with crystalline and fluid phases, within a single simulation. The method utilises biased sampling techniques to enhance the probabilities of gateway states (in each phase) which are such that a global switch (to the other phase) can be implemented. Equilibrium freezing-point parameters can be determined directly; statistical uncertainties prescribed transparently; and finite-size effects quantified systematically. The method is potentially quite general; we apply it to the freezing of hard spheres.Comment: 5 pages, 2 figure

    High-Operating-Temperature Barrier Infrared Detector with Tailorable Cutoff Wavelength

    Get PDF
    A mid-wavelength infrared (MWIR) barrier photodetector is capable of operating at higher temperature than the prevailing MWIR detectors based on InSb. The standard high-operating-temperature barrier infrared detector (HOT-BIRD) is made with an InAsSb infrared absorber that is lattice-matched to a GaSb substrate, and has a cutoff wavelength of approximately 4 microns. To increase the versatility and utility of the HOT-BIRD, it is implemented with IR absorber materials with customizable cutoff wavelengths. The HOT-BIRD can be built with the quaternary alloy GaInAsSb as the absorber, GaAlSbAs as the barrier, on a lattice-matching GaSb substrate. The cutoff wavelength of the GaInAsSb can be tailored by adjusting the alloy composition. To build a HOT-BIRD requires a matching pair of absorber and barrier materials with the following properties: (1) their valence band edges must be approximately the same to allow unimpeded hole flow, while their conduction band edges should have a large difference to form an electron barrier; and (2) the absorber and the barrier must be respectively lattice-matched and closely lattice-matched to the substrate to ensure high material quality and low defect density. To make a HOT-BIRD with cutoff wavelength shorter than 4 microns, a GaInAsSb quaternary alloy was used as the absorber, and a matching GaAlSbAs quaternary alloy as the barrier. By changing the alloy composition, the band gap of the quaternary alloy absorber can be continuously adjusted with cutoff wavelength ranging from 4 microns down to the short wavelength infrared (SWIR). By carefully choosing the alloy composition of the barrier, a HOT-BIRD structure can be formed. With this method, a HOT-BIRD can be made with continuously tailorable cutoff wavelengths from 4 microns down to the SWIR. The HOT-BIRD detector technology is suitable for making very-large-format MWIR/SWIR focal plane arrays that can be operated by passive cooling from low Earth orbit. High-operating temperature infrared with reduced cooling requirement would benefit space missions in reduction of size, weight, and power, and an increase in mission lifetime

    High Operating Temperature Barrier Infrared Detector with Tailorable Cutoff Wavelength

    Get PDF
    A barrier infrared detector with absorber materials having selectable cutoff wavelengths and its method of manufacture is described. A GaInAsSb absorber layer may be grown on a GaSb substrate layer formed by mixing GaSb and InAsSb by an absorber mixing ratio. A GaAlAsSb barrier layer may then be grown on the barrier layer formed by mixing GaSb and AlSbAs by a barrier mixing ratio. The absorber mixing ratio may be selected to adjust a band gap of the absorber layer and thereby determine a cutoff wavelength for the barrier infrared detector. The absorber mixing ratio may vary along an absorber layer growth direction. Various contact layer architectures may be used. In addition, a top contact layer may be isolated into an array of elements electrically isolated as individual functional detectors that may be used in a detector array, imaging array, or focal plane array

    High Energy Particles from Monopoles Connected by Strings

    Get PDF
    Monopole-antimonopole pairs connected by strings and monopole-string networks with N>2N>2 strings attached to each monopole can be formed at phase transitions in the early universe. In such hybrid defects, monopoles accelerate under the string tension and can reach ultrarelativistic Lorentz factors, γ1\gamma\gg 1. We study the radiation of gauge quanta by accelerating monopoles. For monopoles with a chromomagnetic charge, we also discuss the high-energy hadron production through emission of virtual gluons and their subsequent fragmentation into hadrons. The relevant parameter for gauge boson radiation is M/aM/a, where MM is the boson mass and aa is the proper acceleration of the monopole. For MaM\ll a, the gauge bosons can be considered as massless and the typical energy of the emitted quanta is EγaE\sim\gamma a. In the opposite limit, MaM\gg a, the radiation power is exponentially suppressed and gauge quanta are emitted with a typical energy EγME\sim\gamma M in a narrow range ΔE/E(a/M)1/2\Delta E/E\sim (a/M)^{1/2}. Cosmological monopole-string networks can produce photons and hadrons of extremely high energies. For a wide range of parameters these energies can be much greater than the Planck scale.Comment: 28 pages, ReVTex, 5 postscript figures. Minor changes, some references added. Submitted to Phys. Rev.

    The rate and predictors of healing of repaired lesser tuberosity osteotomy in reverse total shoulder arthroplasty

    Get PDF
    BACKGROUND: Evidence is building that a functional subscapularis improves function-specifically internal rotation tasks-following reverse total shoulder arthroplasty (rTSA). However, the optimal method for subscapularis repair during rTSA remains unknown with variable healing rates reported. This study aims to investigate the rate of and predictors for healing a lesser tuberosity osteotomy (LTO) following rTSA. METHODS: Following local institutional review board approval, patients with at least one-year follow-up for rTSA managed with an LTO and subsequent repair between March, 2017 and March, 2020 were retrospectively identified. Shoulders were selected for LTO repair based upon preoperative imaging and intraoperative assessment of subscapularis quality. All patients were implanted with a system consisting of a 150° or 155° (constrained) humeral neck-shaft angle and 2.5 to 4.5 millimeters (mm) of glenoid lateralization (Trabecular Metal Reverse Shoulder System; Zimmer Biomet, Warsaw, IN, USA). At a minimum of six months, radiographs were reviewed for an assessment of LTO healing by three independent reviewers. Healing was classified as displaced, fibrous union, or ossified union. For assessing predictors, the repair was considered intact if the LTO fragment was not displaced (fibrous union or ossified union). RESULTS: Sixty-five rTSA with LTO repair were performed in 64 patients. These patients had an average age of 67.2 years (range, 31-81) and 36 (55.4%; 36/65) were female. At an average follow-up of 15.2 months (range, 8-38), 50 cases (76.9%; 50/65) were classified as having an ossified union. The radiographic healing could not be assessed in a single case. Of the 14 cases without ossific union, 8 (12.3%; 8/65) were displaced and 6 (9.2%; 6/65) were classified as a fibrous union. In logistic regression, only combined humeral liner height predicted LTO displacement (odds ratio = 1.4 [95% confidence interval = 1.1-1.8]; CONCLUSION: This analysis demonstrates that radiographic healing of LTO repair is more favorable than published rates of healing after subscapularis tenotomy or peel in the setting of rTSA. Subscapularis management with LTO provides the ability to monitor repair integrity with plain radiographs and a predictable radiographic healing rate. The integrity of subscapularis repair may be influenced by the use of thicker humeral liners. Further investigation is needed to determine the functional impact of a healed subscapularis following rTSA

    Beyond ‘witnessing’: children’s experiences of coercive control in domestic violence and abuse

    Get PDF
    Children’s experiences and voices are underrepresented in academic literature and professional practice around domestic violence and abuse. The project ‘Understanding Agency and Resistance Strategies’ addresses this absence, through direct engagement with children. We present an analysis from interviews with 21 children in the United Kingdom (12 girls and 9 boys, aged 8-18 years), about their experiences of domestic violence and abuse, and their responses to this violence. These interviews were analysed using interpretive interactionism. Three themes from this analysis are presented: a) ‘Children’s experiences of abusive control’, which explores children’s awareness of controlling behaviour by the adult perpetrator, their experience of that control, and its impact on them; b) ‘Constraint’, which explores how children experience the constraint associated with coercive control in situations of domestic violence, and c) ‘Children as agents’ which explores children’s strategies for managing controlling behaviour in their home and in family relationships. The paper argues that, in situations where violence and abuse occurs between adult intimate partners, children are significantly impacted, and can be reasonably described as victims of abusive control. Recognising children as direct victims of domestic violence and abuse would produce significant changes in the way professionals respond to them, by 1) recognising children’s experience of the impact of domestic violence and abuse; 2) recognising children’s agency, undermining the perception of them as passive ‘witnesses’ or ‘collateral damage’ in adult abusive encounters; and 3) strengthening professional responses to them as direct victims, not as passive witnesses to violence
    corecore