65 research outputs found

    Suggested Improvements for the Allergenicity Assessment of Genetically Modified Plants Used in Foods

    Get PDF
    Genetically modified (GM) plants are increasingly used for food production and industrial applications. As the global population has surpassed 7 billion and per capita consumption rises, food production is challenged by loss of arable land, changing weather patterns, and evolving plant pests and disease. Previous gains in quantity and quality relied on natural or artificial breeding, random mutagenesis, increased pesticide and fertilizer use, and improved farming techniques, all without a formal safety evaluation. However, the direct introduction of novel genes raised questions regarding safety that are being addressed by an evaluation process that considers potential increases in the allergenicity, toxicity, and nutrient availability of foods derived from the GM plants. Opinions vary regarding the adequacy of the assessment, but there is no documented proof of an adverse effect resulting from foods produced from GM plants. This review and opinion discusses current practices and new regulatory demands related to food safety

    Value of eight-amino-acid matches in predicting the allergenicity status of proteins: an empirical bioinformatic investigation

    Get PDF
    The use of biotechnological techniques to introduce novel proteins into food crops (transgenic or GM crops) has motivated investigation into the properties of proteins that favor their potential to elicit allergic reactions. As part of the allergenicity assessment, bioinformatic approaches are used to compare the amino-acid sequence of candidate proteins with sequences in a database of known allergens to predict potential cross reactivity between novel food proteins and proteins to which people have become sensitized. Two criteria commonly used for these queries are searches over 80-amino-acid stretches for >35% identity, and searches for 8-amino-acid contiguous matches. We investigated the added value provided by the 8-amino-acid criterion over that provided by the >35%-identity-over-80-amino-acid criterion, by identifying allergens pairs that only met the former criterion, but not the latter criterion. We found that the allergen-sequence pairs only sharing 8-amino-acid identity, but not >35% identity over 80 amino acids, were unlikely to be cross reactive allergens. Thus, the common search for 8-amino-acid identity between novel proteins and known allergens appears to be of little additional value in assessing the potential allergenicity of novel proteins

    Allergenicity assessment of genetically modified crops—what makes sense?

    Get PDF
    GM crops have great potential to improve food quality, increase harvest yields and decrease dependency on certain chemical pesticides. Before entering the market their safety needs to be scrutinized. This includes a detailed analysis of allergenic risks, as the safety of allergic consumers has high priority. However, not all tests currently being applied to assessing allergenicity have a sound scientific basis. Recent events with transgenic crops reveal the fallacy of applying such tests to GM crops

    Determination of the primary structure and carboxyl pKAs of heparin-derived oligosaccharides by band-selective homonuclear-decoupled two-dimensional 1H NMR

    Get PDF
    Determination of the structure of heparin-derived oligosaccharides by 1H NMR is challenging because resonances for all but the anomeric protons cover less than 2 ppm. By taking advantage of increased dispersion of resonances for the anomeric H1 protons at low pD and the superior resolution of band-selective, homonuclear-decoupled (BASHD) two-dimensional 1H NMR, the primary structure of the heparin-derived octasaccharide ∆UA(2S)-[(1 → 4)-GlcNS(6S)-(1 → 4)-IdoA(2S)-]3-(1 → 4)-GlcNS(6S) has been determined, where ∆UA(2S) is 2-O-sulfated ∆4,5-unsaturated uronic acid, GlcNS(6S) is 6-O-sulfated, N-sulfated β-d-glucosamine and IdoA(2S) is 2-O-sulfated α-l-iduronic acid. The spectrum was assigned, and the sites of N- and O-sulfation and the conformation of each uronic acid residue were established, with chemical shift data obtained from BASHD-TOCSY spectra, while the sequence of the monosaccharide residues in the octasaccharide was determined from inter-residue NOEs in BASHD-NOESY spectra. Acid dissociation constants were determined for each carboxylic acid group of the octasaccharide, as well as for related tetra- and hexasaccharides, from chemical shift–pD titration curves. Chemical shift–pD titration curves were obtained for each carboxylic acid group from sub-spectra taken from BASHD-TOCSY spectra that were measured as a function of pD. The pKAs of the carboxylic acid groups of the ∆UA(2S) residues are less than those of the IdoA(2S) residues, and the pKAs of the carboxylic acid groups of the IdoA(2S) residues for a given oligosaccharide are similar in magnitude. Relative acidities of the carboxylic acid groups of each oligosaccharide were calculated from chemical shift data by a pH-independent method

    Functional dissection of the Drosophila Kallmann's syndrome protein DmKal-1

    Get PDF
    BACKGROUND: Anosmin-1, the protein implicated in the X-linked Kallmann's syndrome, plays a role in axon outgrowth and branching but also in epithelial morphogenesis. The molecular mechanism of its action is, however, widely unknown. Anosmin-1 is an extracellular protein which contains a cysteine-rich region, a whey acidic protein (WAP) domain homologous to some serine protease inhibitors, and four fibronectin-like type III (FnIII) repeats. Drosophila melanogaster Kal-1 (DmKal-1) has the same protein structure with minor differences, the most important of which is the presence of only two FnIII repeats and a C-terminal region showing a low similarity with the third and the fourth human FnIII repeats. We present a structure-function analysis of the different DmKal-1 domains, including a predicted heparan-sulfate binding site. RESULTS: This study was performed overexpressing wild type DmKal-1 and a series of deletion and point mutation proteins in two different tissues: the cephalopharyngeal skeleton of the embryo and the wing disc. The overexpression of DmKal-1 in the cephalopharyngeal skeleton induced dosage-sensitive structural defects, and we used these phenotypes to perform a structure-function dissection of the protein domains. The reproduction of two deletions found in Kallmann's Syndrome patients determined a complete loss of function, whereas point mutations induced only minor alterations in the activity of the protein. Overexpression of the mutant proteins in the wing disc reveals that the functional relevance of the different DmKal-1 domains is dependent on the extracellular context. CONCLUSION: We suggest that the role played by the various protein domains differs in different extracellular contexts. This might explain why the same mutation analyzed in different tissues or in different cell culture lines often gives opposite phenotypes. These analyses also suggest that the FnIII repeats have a main and specific role, while the WAP domain might have only a modulator role, strictly connected to that of the fibronectins

    A Triad of Lys12, Lys41, Arg78 Spatial Domain, a Novel Identified Heparin Binding Site on Tat Protein, Facilitates Tat-Driven Cell Adhesion

    Get PDF
    Tat protein, released by HIV-infected cells, has a battery of important biological effects leading to distinct AIDS-associated pathologies. Cell surface heparan sulfate protoglycans (HSPGs) have been accepted as endogenous Tat receptors, and the Tat basic domain has been identified as the heparin binding site. However, findings that deletion or substitution of the basic domain inhibits but does not completely eliminate Tat–heparin interactions suggest that the basic domain is not the sole Tat heparin binding site. In the current study, an approach integrating computational modeling, mutagenesis, biophysical and cell-based assays was used to elucidate a novel, high affinity heparin-binding site: a Lys12, Lys41, Arg78 (KKR) spatial domain. This domain was also found to facilitate Tat-driven β1 integrin activation, producing subsequent SLK cell adhesion in an HSPG-dependent manner, but was not involved in Tat internalization. The identification of this new heparin binding site may foster further insight into the nature of Tat-heparin interactions and subsequent biological functions, facilitating the rational design of new therapeutics against Tat-mediated pathological events

    Both the C-Terminal Polylysine Region and the Farnesylation of K-RasB Are Important for Its Specific Interaction with Calmodulin

    Get PDF
    Background: Ras protein, as one of intracellular signal switches, plays various roles in several cell activities such as differentiation and proliferation. There is considerable evidence showing that calmodulin (CaM) binds to K-RasB and dissociates K-RasB from membrane and that the inactivation of CaM is able to induce K-RasB activation. However, the mechanism for the interaction of CaM with K-RasB is not well understood. Methodology/Principal Findings: Here, by applying fluorescence spectroscopy and isothermal titration calorimetry, we have obtained thermodynamic parameters for the interaction between these two proteins and identified the important elements of K-RasB for its interaction with Ca 2+ /CaM. One K-RasB molecule interacts with one CaM molecule in a GTP dependent manner with moderate, micromolar affinity at physiological pH and physiologic ionic strength. Mutation in the polybasic domain of K-Ras decreases the binding affinity. By using a chimera in which the C-terminal polylysine region of K-RasB has been replaced with that of H-Ras and vice versa, we find that at physiological pH, H-Ras-(KKKKKK) and Ca 2+ /CaM formed a 1:1 complex with an equilibrium association constant around 10 5 M 21, whereas no binding reaction of K-RasB-(DESGPC) with Ca 2+ /CaM is detected. Furthermore, the interaction of K-RasB with Ca 2+ /CaM is found to be enhanced by the farnesylation of K-RasB. Conclusions/Significance: We demonstrate that the polylysine region of K-RasB not only contributes importantly to th

    Small lytic peptides escape the inhibitory effect of heparan sulfate on the surface of cancer cells

    Get PDF
    Several naturally occurring cationic antimicrobial peptides (CAPs), including bovine lactoferricin (LfcinB), display promising anticancer activities. These peptides are unaffected by multidrug resistance mechanisms and have been shown to induce a protective immune response against solid tumors, thus making them interesting candidates for developing novel lead structures for anticancer treatment. Recently, we showed that the anticancer activity by LfcinB was inhibited by the presence of heparan sulfate (HS) on the surface of tumor cells. Based on extensive structure-activity relationship studies performed on LfcinB, shorter and more potent peptides have been constructed. In the present study, we have investigated the anticancer activity of three chemically modified 9-mer peptides and the influence of HS and chondroitin sulfate (CS) on their cytotoxic activity. Various cell lines and red blood cells were used to investigate the anticancer activity and selectivity of the peptides. The cytotoxic effect of the peptides against the different cell lines was measured by use of a colorimetric MTT viability assay. The influence of HS and CS on their cytotoxic activity was evaluated by using HS/CS expressing and HS/CS deficient cell lines. The ability of soluble HS and CS to inhibit the cytotoxic activity of the peptides and the peptides’ affinity for HS and CS were also investigated. The 9-mer peptides displayed selective anticancer activity. Cells expressing HS/CS were equally or more susceptible to the peptides than cells not expressing HS/CS. The peptides displayed a higher affinity for HS compared to CS, and exogenously added HS inhibited the cytotoxic effect of the peptides. In contrast to the previously reported inhibitory effect of HS on LfcinB, the present study shows that the cytotoxic activity of small lytic peptides was increased or not affected by cell surface HS

    Human Apolipoprotein A-I-Derived Amyloid: Its Association with Atherosclerosis

    Get PDF
    Amyloidoses constitute a group of diseases in which soluble proteins aggregate and deposit extracellularly in tissues. Nonhereditary apolipoprotein A-I (apoA-I) amyloid is characterized by deposits of nonvariant protein in atherosclerotic arteries. Despite being common, little is known about the pathogenesis and significance of apoA-I deposition. In this work we investigated by fluorescence and biochemical approaches the impact of a cellular microenvironment associated with chronic inflammation on the folding and pro-amyloidogenic processing of apoA-I. Results showed that mildly acidic pH promotes misfolding, aggregation, and increased binding of apoA-I to extracellular matrix elements, thus favoring protein deposition as amyloid like-complexes. In addition, activated neutrophils and oxidative/proteolytic cleavage of the protein give rise to pro amyloidogenic products. We conclude that, even though apoA-I is not inherently amyloidogenic, it may produce non hereditary amyloidosis as a consequence of the pro-inflammatory microenvironment associated to atherogenesis

    Glycosaminoglycan Binding Facilitates Entry of a Bacterial Pathogen into Central Nervous Systems

    Get PDF
    Certain microbes invade brain microvascular endothelial cells (BMECs) to breach the blood-brain barrier (BBB) and establish central nervous system (CNS) infection. Here we use the leading meningitis pathogen group B Streptococcus (GBS) together with insect and mammalian infection models to probe a potential role of glycosaminoglycan (GAG) interactions in the pathogenesis of CNS entry. Site-directed mutagenesis of a GAG-binding domain of the surface GBS alpha C protein impeded GBS penetration of the Drosophila BBB in vivo and diminished GBS adherence to and invasion of human BMECs in vitro. Conversely, genetic impairment of GAG expression in flies or mice reduced GBS dissemination into the brain. These complementary approaches identify a role for bacterial-GAG interactions in the pathogenesis of CNS infection. Our results also highlight how the simpler yet genetically conserved Drosophila GAG pathways can provide a model organism to screen candidate molecules that can interrupt pathogen-GAG interactions for future therapeutic applications
    • …
    corecore