49 research outputs found

    Evolution of small-scale flow barriers in German Rotliegend siliciclastics

    Get PDF
    Many siliciclastic reservoirs contain millimetre-scale diagenetic and structural phenomena affecting fluid flow. We identified three major types of small-scale flow barriers in a clastic Rotliegend hydrocarbon reservoir: cataclastic deformation bands; dissolution seams; and bedding-parallel cementation. Deformation bands of various orientations were analysed on resistivity image logs and in core material. They are mainly conjugates, and can be used to validate seismically observable faults and infer subseismic faults. Bedding-parallel dissolution seams are related to compaction and post-date at least one set of deformation bands. Bedding-parallel cementation is accumulated in coarser-grained layers and depends on the amount of clay coatings. Apparent permeability data related to petrographical image interpretation visualizes the impact of flow barriers on reservoir heterogeneity. Transmissibility multiplier calculations indicate the small efficiency of the studied deformation bands on flow properties in the reservoir. Deformation bands reduce the host-rock permeability by a maximum of two orders of magnitude. However, host-rock anisotropies are inferred to reduce the permeability by a maximum of four orders of magnitude. The relative timing of these flow barriers, as well as the assessment of reservoir heterogeneities, are the basis for state-of-the-art reservoir prediction modelling

    Cryovolcanism in the Solar System and Beyond: Considerations on Energy Sources, Geological Aspects, and Astrobiological Perspectives

    Get PDF
    Volcanism based on melting rocks (silicate volcanism) is long known on Earth and has also been found on Jupiter’s moon Io. Remnants of this type of volcanism have been identified also on other bodies in the solar system. Energy sources powered by accretion and the decay of radioactive isotopes seem to be dominant mainly inside larger bodies, which have enough volume to accumulate and retain this energy in significant amounts. On the other hand, the impact of tidal forces allows even tiny bodies to melt up and pass into the stage of cryovolcanism. The dependence of tidal heating on the size of the object is minor, but the masses of and the distances to accompanying bodies as well as the inner compositions of the heated body are central factors. Even though Io as an example of a body supporting silicate volcanism is striking, the physics of tidal forces might suggest a relatively high probability for cryovolcanism. This chapter aims at considering the parameters known and objects found so far in our solar system to give insights into where in our system and other planetary systems cryovolcanism might be expected

    Incorporation of Low Concentrations of Gold Nanoparticles: Complex Effects on Radiation Response and Fate of Cancer Cells

    Get PDF
    (1) Background: In oncology research, a long-standing discussion exists about pros and cons of metal nanoparticle-enhanced radiotherapy and real mechanisms behind the tumor cell response to irradiation (IR) in presence of gold nanoparticles (GNPs). A better understanding of this response is, however, necessary to develop more efficient and safety nanoparticle (NP) types designed to disturb specific processes in tumor cells. (2) Aims and Methods: We combined 3D confocal microscopy and super-resolution single molecule localization microscopy (SMLM) to analyze, at the multiscale, the early and late effects of 10 nm-GNPs on DNA double strand break (DSB) induction and repair in tumor cells exposed to different doses of photonic low-LET (linear energy transfer) radiation. The results were correlated to different aspects of short and long-term cell viability. SkBr3 breast cancer cells (selected for the highest incidence of this cancer type among all cancers in women, and because most breast tumors are treated with IR) were incubated with low concentrations of GNPs and irradiated with Co-60 gamma-rays or 6 MV X-rays. In numerous post-irradiation (PI) times, ranging from 0.5 to 24 h PI, the cells were spatially (3D) fixed and labeled with specific antibodies against gamma H2AX, 53BP1 and H3K9me3. The extent of DSB induction, multi-parametric micro- and nano-morphology of gamma H2AX and 53BP1 repair foci, DSB repair kinetics, persistence of unrepaired DSBs, nanoscale clustering of gamma H2AX and nanoscale (hetero)chromatin re-organization were measured by means of the mentioned microscopy techniques in dependence of radiation dose and GNP concentration. (3) Results: The number of gamma H2AX/53BP1 signals increased after IR and an additional increase was observed in GNP-treated (GNP(+)) cells compared to untreated controls. However, this phenomenon reflected slight expansion of the G2-phase cell subpopulation in irradiated GNP(+) specimens instead of enhanced DNA damage induction by GNPs. This statement is further supported by some micro- and nano-morphological parameters of gamma H2AX/53BP1 foci, which slightly differed for cells irradiated in absence or presence of GNPs. At the nanoscale, Ripley's distance frequency analysis of SMLM signal coordinate matrices also revealed relaxation of heterochromatin (H3K9me3) clusters upon IR. These changes were more prominent in presence of GNPs. The slight expansion of radiosensitive G2 cells correlated with mostly insignificant but systematic decrease in post-irradiation survival of GNP(+) cells. Interestingly, low GNP concentrations accelerated DSB repair kinetics; however, the numbers of persistent gamma H2AX/53BP1 repair foci were slightly increased in GNP(+) cells. (4) Conclusions: Low concentrations of 10-nm GNPs enhanced the G2/M cell cycle arrest and the proportion of radiosensitive G2 cells, but not the extent of DNA damage induction. GNPs also accelerated DSB repair kinetics and slightly increased presence of unrepaired gamma H2AX/53BP1 foci at 24 h PI. GNP-mediated cell effects correlated with slight radiosensitization of GNP(+) specimens, significant only for the highest radiation dose tested (4 Gy)

    Challenges and Contradictions of Metal Nano-Particle Applications for Radio-Sensitivity Enhancement in Cancer Therapy

    Get PDF
    From the very beginnings of radiotherapy, a crucial question persists with how to target the radiation effectiveness into the tumor while preserving surrounding tissues as undamaged as possible. One promising approach is to selectively pre-sensitize tumor cells by metallic nanoparticles. However, though the “physics” behind nanoparticle-mediated radio-interaction has been well elaborated, practical applications in medicine remain challenging and often disappointing because of limited knowledge on biological mechanisms leading to cell damage enhancement and eventually cell death. In the present study, we analyzed the influence of different nanoparticle materials (platinum (Pt), and gold (Au)), cancer cell types (HeLa, U87, and SKBr3), and doses (up to 4 Gy) of low-Linear Energy Transfer (LET) ionizing radiation (- and X-rays) on the extent, complexity and reparability of radiation-induced H2AX + 53BP1 foci, the markers of double stand breaks (DSBs). Firstly, we sensitively compared the focus presence in nuclei during a long period of time post-irradiation (24 h) in spatially (three-dimensionally, 3D) fixed cells incubated and non-incubated with Pt nanoparticles by means of high-resolution immunofluorescence confocal microscopy. The data were compared with our preliminary results obtained for Au nanoparticles and recently published results for gadolinium (Gd) nanoparticles of approximately the same size (2–3 nm). Next, we introduced a novel super-resolution approach—single molecule localization microscopy (SMLM)—to study the internal structure of the repair foci. In these experiments, 10 nm Au nanoparticles were used that could be also visualized by SMLM. Altogether, the data show that different nanoparticles may or may not enhance radiation damage to DNA, so multi-parameter effects have to be considered to better interpret the radiosensitization. Based on these findings, we discussed on conclusions and contradictions related to the effectiveness and presumptive mechanisms of the cell radiosensitization by nanoparticles. We also demonstrate that SMLM offers new perspectives to study internal structures of repair foci with the goal to better evaluate potential differences in DNA damage patterns

    Analysis of Tidal Accelerations in the Solar System and in Extrasolar Planetary Systems

    No full text
    Volcanism powered by tidal forces inside celestial bodies can provide enough energy to keep important solvents for living systems in the liquid phase. A prerequisite to calculate such tidal interactions and consequences is depending on simulations for tidal accelerations in a multi-body system. Unfortunately, from measurements in many extrasolar planetary systems, only few physical and orbital parameters are well-known enough for investigated celestial bodies. For calculating tidal acceleration vectors under missing most orbital parameter exactly, a simulation method is developed that is only based on a few basic parameters, easily measurable even in extrasolar planetary systems. Such a method as the one presented here allows finding a relation between the tidal acceleration vectors and potential heating inside celestial objects. Using the values and results of our model approach to our solar system as a “gold standard” for feasibility allowed us to classify this heating in relation to different forms of volcanism. This “gold standard” approach gave us a classification measure for the relevance of tidal heating in other extrasolar systems with a reduced availability of exact physical parameters. We help to estimate conditions for the identification of potential candidates for further sophisticated investigations by more complex established methods such as viscoelastic multi-body theories. As a first example, we applied the procedures developed here to the extrasolar planetary system TRAPPIST-1 as an example to check our working hypothesis

    Conservation of k-mer Composition and Correlation Contribution between Introns and Intergenic Regions of Animalia Genomes

    No full text
    In this study, we pairwise-compared multiple genome regions, including genes, exons, coding DNA sequences (CDS), introns, and intergenic regions of 39 Animalia genomes, including Deuterostomia (27 species) and Protostomia (12 species), by applying established k-mer-based (alignment-free) comparison methods. We found strong correlations between the sequence structure of introns and intergenic regions, individual organisms, and within wider phylogenetical ranges, indicating the conservation of certain structures over the full range of analyzed organisms. We analyzed these sequence structures by quantifying the contribution of different sets of DNA words to the average correlation value by decomposing the correlation coefficients with respect to these word sets. We found that the conserved structures within introns, intergenic regions, and between the two were mainly a result of conserved tandem repeats with repeat units ≤ 2 bp (e.g., (AT)n), while other conserved sequence structures, such as those found between exons and CDS, were dominated by tandem repeats with repeat unit sizes of 3 bp in length and more complex DNA word patterns. We conclude that the conservation between intron and intergenic regions indicates a shared function of these sequence structures. Also, the similar differences in conserved structures with known origin, especially to the conservation between exons and CDS resulting from DNA codons, indicate that k-mer composition-based functional properties of introns and intergenic regions may differ from those of exons and CDS
    corecore