43 research outputs found

    Expression and regulation of human activins and their receptors

    Get PDF

    Developments and opportunities in fungal strain engineering for the production of novel enzymes and enzyme cocktails for plant biomass degradation

    Get PDF
    Fungal strain engineering is commonly used in many areas of biotechnology, including the production of plant biomass degrading enzymes. Its aim varies from the production of specific enzymes to overall increased enzyme production levels and modification of the composition of the enzyme set that is produced by the fungus. Strain engineering involves a diverse range of methodologies, including classical mutagenesis, genetic engineering and genome editing. In this review, the main approaches for strain engineering of filamentous fungi in the field of plant biomass degradation will be discussed, including recent and not yet implemented methods, such as CRISPR/Cas9 genome editing and adaptive evolution.Peer reviewe

    Applicability of Recombinant Laccases From the White-Rot Fungus Obba rivulosa for Mediator-Promoted Oxidation of Biorefinery Lignin at Low pH

    Get PDF
    Utilization of lignin-rich side streams has been a focus of intensive studies recently. Combining biocatalytic methods with chemical treatments is a promising approach for sustainable modification of lignocellulosic waste streams. Laccases are catalysts in lignin biodegradation with proven applicability in industrial scale. Laccases directly oxidize lignin phenolic components, and their functional range can be expanded using low-molecular-weight compounds as mediators to include non-phenolic lignin structures. In this work, we studied in detail recombinant laccases from the selectively lignin-degrading white-rot fungus Obba rivulosa for their properties and evaluated their potential as industrial biocatalysts for the modification of wood lignin and lignin-like compounds. We screened and optimized various laccase mediator systems (LMSs) using lignin model compounds and applied the optimized reaction conditions to biorefinery-sourced technical lignin. In the presence of both N–OH-type and phenolic mediators, the O. rivulosa laccases were shown to selectively oxidize lignin in acidic reaction conditions, where a cosolvent is needed to enhance lignin solubility. In comparison to catalytic iron(III)–(2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) oxidation systems, the syringyl-type lignin units were preferred in mediated biocatalytic oxidation systems.Peer reviewe

    A comparison between the homocyclic aromatic metabolic pathways from plant-derived compounds by bacteria and fungi

    Get PDF
    Aromatic compounds derived from lignin are of great interest for renewable biotechnical applications. They can serve in many industries e.g. as biochemical building blocks for bioplastics or biofuels, or as antioxidants, flavor agents or food preservatives. In nature, lignin is degraded by microorganisms, which results in the release of homocyclic aromatic compounds. Homocyclic aromatic compounds can also be linked to polysaccharides, tannins and even found freely in plant biomass. As these compounds are often toxic to microbes already at low concentrations, they need to be degraded or converted to less toxic forms. Prior to ring cleavage, the plant- and lignin-derived aromatic compounds are converted to seven central ring-fission intermediates, i.e. catechol, protocatechuic acid, hydroxyquinol, hydroquinone, gentisic acid, gallic acid and pyrogallol through complex aromatic metabolic pathways and used as energy source in the tricarboxylic acid cycle. Over the decades, bacterial aromatic metabolism has been described in great detail. However, the studies on fungal aromatic pathways are scattered over different pathways and species, complicating a comprehensive view of fungal aromatic metabolism. In this review, we depicted the similarities and differences of the reported aromatic metabolic pathways in fungi and bacteria. Although both microorganisms share the main conversion routes, many alternative pathways are observed in fungi. Understanding the microbial aromatic metabolic pathways could lead to metabolic engineering for strain improvement and promote valorization of lignin and related aromatic compounds.Peer reviewe

    Fractionation of Technical Lignin from Enzymatically Treated Steam-Exploded Poplar Using Ethanol and Formic Acid

    Get PDF
    Lignocellulosic biorefineries produce lignin-rich side streams with high valorization potential concealed behind their recalcitrant structure. Valorization of these residues to chemicals, materials, and fuels increases the profitability of biorefineries. Fractionation is required to reduce the lignins’ structural heterogeneity for further processing. We fractionated the technical biorefinery lignin received after steam explosion and saccharification processes. More homogeneous lignin fractions were produced with high β-O-4′ and aromatic content without residual carbohydrates. Non-toxic biodegradable organic solvents like ethanol and formic acid were used for fractionation and can be adapted to the existing biorefinery processes. Macromolecular properties of the isolated fractions were carefully characterized by structural, chemical, and thermal methods. The ethanol organosolv treatment produced highly soluble lignin with a reasonable yield, providing a uniform material for lignin applications. The organosolv fractionation with formic acid and combined ethanol-formic acid produced modified lignins that, based on thermal analysis, are promising as thermoresponsive materials.Lignocellulosic biorefineries produce lignin-rich side streams with high valorization potential concealed behind their recalcitrant structure. Valorization of these residues to chemicals, materials, and fuels increases the profitability of biorefineries. Fractionation is required to reduce the lignins' structural heterogeneity for further processing. We fractionated the technical biorefinery lignin received after steam explosion and saccharification processes. More homogeneous lignin fractions were produced with high beta-O-4 ' and aromatic content without residual carbohydrates. Non-toxic biodegradable organic solvents like ethanol and formic acid were used for fractionation and can be adapted to the existing biorefinery processes. Macromolecular properties of the isolated fractions were carefully characterized by structural, chemical, and thermal methods. The ethanol organosolv treatment produced highly soluble lignin with a reasonable yield, providing a uniform material for lignin applications. The organosolv fractionation with formic acid and combined ethanol-formic acid produced modified lignins that, based on thermal analysis, are promising as thermoresponsive materials.Peer reviewe

    On the Effect of Hot-Water Pretreatment in Sulfur-Free Pulping of Aspen and Wheat Straw

    Get PDF
    Published under an ACS AuthorChoice LicenseIn modern biorefineries, low value lignin and hemicellulose fractions are produced as side streams. New extraction methods for their purification are needed in order to utilize the whole biomass more efficiently and to produce special target products. In several new applications using plant based biomaterials, the native-type chemical and polymeric properties are desired. Especially, production of high-quality native-type lignin enables valorization of biomass entirely, thus making novel processes sustainable and economically viable. To investigate sulfur-free possibilities for so-called "lignin first" technologies, we compared alkaline organosolv, formic acid organosolv, and ionic liquid processes to simple soda "cooking" using wheat straw and aspen as raw materials. All experiments were carried out using microwave-assisted pulping approach toy enable rapid heat transfer and convenient control of temperature and pressure. The main target was to evaluate the advantage of a brief hot water extraction as a pretreatment for the pulping process. Most of these novel pulping methods resulted in high-quality lignin, which may be valorized more diversely than kraft lignin. Lignin fractions were thoroughly analyzed with NMR (C-13 and HSQC) and gel permeation chromatography to study the quality of the collected lignin. The cellulose fractions were analyzed by determining their lignin contents and carbohydrate profiles for further utilization in cellulose-based products or biofuels.Peer reviewe

    Genomic and exoproteomic diversity in plant biomass degradation approaches among Aspergilli

    Get PDF
    We classified the genes encoding carbohydrate-active enzymes (CAZymes) in 17 sequenced genomes representing 16 evolutionarily diverse Aspergillus species. We performed a phylogenetic analysis of the encoding enzymes, along with experimentally characterized CAZymes, to assign molecular function to the Aspergilli CAZyme families and subfamilies. Genome content analysis revealed that the numbers of CAZy genes per CAZy family related to plant biomass degradation follow closely the taxonomic distance between the species. On the other hand, growth analysis showed almost no correlation between the number of CAZyme genes and the efficiency in polysaccharide utilization. The exception is A. clavatus where a reduced number of pectinolytic enzymes can be correlated with poor growth on pectin. To gain detailed information on the enzymes used by Aspergilli to breakdown complex biomass, we conducted exoproteome analysis by mass spectrometry. These results showed that Aspergilli produce many different enzymes mixtures in the presence of sugar beet pulp and wheat bran. Despite the diverse enzyme mixtures produced, species of section Nigri, A. aculeatus, A. nidulans and A. terreus, produce mixtures of enzymes with activities that are capable of digesting all the major polysaccharides in the available substrates, suggesting that they are capable of degrading all the polysaccharides present simultaneously. For the other Aspergilli, typically the enzymes produced are targeted to a subset of polysaccharides present, suggesting that they can digest only a subset of polysaccharides at a given time.Peer reviewe
    corecore