1,620 research outputs found

    The oxygen isotopic composition of phytolith assemblages from tropical rainforest soil tops (Queensland, Australia): validation of a new paleoenvironmental tool

    Get PDF
    Phytoliths are micrometric particles of amorphous silica that form inside or between the cells of higher plant tissues throughout the life of a plant. With plant decay, phytoliths are either incorporated into soils or exported to sediments via regional watersheds. Phytolith morphological assemblages are increasingly used as proxy of grassland diversity and tree cover density in inter-tropical areas. Here, we investigate whether, along altitudinal gradients in northeast Queensland (Australia), changes in the δ<sup>18</sup>O signature of soil top phytolith assemblages reflect changes in mean annual temperature (MAT) and in the oxygen isotopic composition of precipitation (δ<sup>18</sup>O<sub>precipitation</sub>), as predicted by equilibrium temperature coefficients previously published for silica. Oxygen isotopic analyses were performed on 16 phytolith samples, after controlled isotopic exchange (CIE), using the IR Laser-Heating Fluorination Technique. Long-term mean annual precipitation (MAP) and MAT values at the sampled sites were calculated by the ANUCLIM software. δ<sup>18</sup>O<sub>precipitation</sub> estimates were calculated using the Bowen and Wilkinson (2002) model, slightly modified. An empirical temperature-dependant relationship was obtained: δ<sup>18</sup>O<sub>wood phytolith-precipitation</sub> (‰ vs. VSMOW) = −0.4 (±0.2) <i>t</i> (°C) + 46 (±3) (<i>R</i><sup>2</sup> = 0.4, <i>p</i> < 0.05; <i>n</i> = 12). Despite the various unknowns introduced when estimating δ<sup>18</sup>O<sub>precipitation</sub> values and the large uncertainties on δ<sup>18</sup>O<sub>wood phytolith</sub> values, the temperature coefficient (−0.4 ± 0.2‰ °C<sup>−1</sup>) is in the range of values previously obtained for natural quartz, fresh and sedimentary diatoms and harvested grass phytoliths (from −0.2 to −0.5‰ °C<sup>−1</sup>). The consistency supports the reliability of δ<sup>18</sup>O<sub>wood phytolith</sub> signatures for recording relative changes in mean annual δ<sup>18</sup>O<sub>soil water</sub> values (which are assumed to be equivalent to the weighted annual δ<sup>18</sup>O<sub> precipitation</sub> values in rainforests environments) and MAT, provided these changes were several ‰ and/or several °C in magnitude

    Irregular Dynamics in Up and Down Cortical States

    Get PDF
    Complex coherent dynamics is present in a wide variety of neural systems. A typical example is the voltage transitions between up and down states observed in cortical areas in the brain. In this work, we study this phenomenon via a biologically motivated stochastic model of up and down transitions. The model is constituted by a simple bistable rate dynamics, where the synaptic current is modulated by short-term synaptic processes which introduce stochasticity and temporal correlations. A complete analysis of our model, both with mean-field approaches and numerical simulations, shows the appearance of complex transitions between high (up) and low (down) neural activity states, driven by the synaptic noise, with permanence times in the up state distributed according to a power-law. We show that the experimentally observed large fluctuation in up and down permanence times can be explained as the result of sufficiently noisy dynamical synapses with sufficiently large recovery times. Static synapses cannot account for this behavior, nor can dynamical synapses in the absence of noise

    Thermohydraulics of Resistive Transitions of the LHC Prototype Magnet String: Theoretical Modeling and Experimental Results

    Get PDF
    In preparation for the Large Hadron Collider (LHC) project, a 40 m-long prototype superconducting magnet string, representing a half-cell of the machine lattice, has been built and operated. The superconducting magnets which comprise this string normally operate in a pressurized static bath of superfluid helium at a pressure of 1 bar and at a temperature of 1.9 K. At 13.1 kA they have about 15.3 MJ of stored magnetic energy. A series of tests was performed to assess the thermohydraulics of resistive transitions (quenches) of the string of magnets. These measurements provide the necessary foundation for describing of the observed pressure rise as the combination of two processes, each acting on a different time scale. The measurements are presented and an explanatory model description of the events is given

    A Contour Integral Representation for the Dual Five-Point Function and a Symmetry of the Genus Four Surface in R6

    Full text link
    The invention of the "dual resonance model" N-point functions BN motivated the development of current string theory. The simplest of these models, the four-point function B4, is the classical Euler Beta function. Many standard methods of complex analysis in a single variable have been applied to elucidate the properties of the Euler Beta function, leading, for example, to analytic continuation formulas such as the contour-integral representation obtained by Pochhammer in 1890. Here we explore the geometry underlying the dual five-point function B5, the simplest generalization of the Euler Beta function. Analyzing the B5 integrand leads to a polyhedral structure for the five-crosscap surface, embedded in RP5, that has 12 pentagonal faces and a symmetry group of order 120 in PGL(6). We find a Pochhammer-like representation for B5 that is a contour integral along a surface of genus five. The symmetric embedding of the five-crosscap surface in RP5 is doubly covered by a symmetric embedding of the surface of genus four in R6 that has a polyhedral structure with 24 pentagonal faces and a symmetry group of order 240 in O(6). The methods appear generalizable to all N, and the resulting structures seem to be related to associahedra in arbitrary dimensions.Comment: 43 pages and 44 figure

    The double torus as a 2D cosmos: groups, geometry and closed geodesics

    Full text link
    The double torus provides a relativistic model for a closed 2D cosmos with topology of genus 2 and constant negative curvature. Its unfolding into an octagon extends to an octagonal tessellation of its universal covering, the hyperbolic space H^2. The tessellation is analysed with tools from hyperbolic crystallography. Actions on H^2 of groups/subgroups are identified for SU(1, 1), for a hyperbolic Coxeter group acting also on SU(1, 1), and for the homotopy group \Phi_2 whose extension is normal in the Coxeter group. Closed geodesics arise from links on H^2 between octagon centres. The direction and length of the shortest closed geodesics is computed.Comment: Latex, 27 pages, 5 figures (late submission to arxiv.org

    A Note on Infinities in Eternal Inflation

    Full text link
    In some well-known scenarios of open-universe eternal inflation, developed by Vilenkin and co-workers, a large number of universes nucleate and thermalize within the eternally inflating mega-universe. According to the proposal, each universe nucleates at a point, and therefore the boundary of the nucleated universe is a space-like surface nearly coincident with the future light cone emanating from the point of nucleation, all points of which have the same proper-time. This leads the authors to conclude that at the proper-time t = t_{nuc} at which any such nucleation occurs, an infinite open universe comes into existence. We point out that this is due entirely to the supposition of the nucleation occurring at a single point, which in light of quantum cosmology seems difficult to support. Even an infinitesimal space-like length at the moment of nucleation gives a rather different result -- the boundary of the nucleating universe evolves in proper-time and becomes infinite only in an infinite time. The alleged infinity is never attained at any finite time.Comment: 13 pages and 6 figure

    Curved Flats, Pluriharmonic Maps and Constant Curvature Immersions into Pseudo-Riemannian Space Forms

    Full text link
    We study two aspects of the loop group formulation for isometric immersions with flat normal bundle of space forms. The first aspect is to examine the loop group maps along different ranges of the loop parameter. This leads to various equivalences between global isometric immersion problems among different space forms and pseudo-Riemannian space forms. As a corollary, we obtain a non-immersibility theorem for spheres into certain pseudo-Riemannian spheres and hyperbolic spaces. The second aspect pursued is to clarify the relationship between the loop group formulation of isometric immersions of space forms and that of pluriharmonic maps into symmetric spaces. We show that the objects in the first class are, in the real analytic case, extended pluriharmonic maps into certain symmetric spaces which satisfy an extra reality condition along a totally real submanifold. We show how to construct such pluriharmonic maps for general symmetric spaces from curved flats, using a generalised DPW method.Comment: 21 Pages, reference adde

    Univalent Foundations and the UniMath Library

    Get PDF
    We give a concise presentation of the Univalent Foundations of mathematics outlining the main ideas, followed by a discussion of the UniMath library of formalized mathematics implementing the ideas of the Univalent Foundations (section 1), and the challenges one faces in attempting to design a large-scale library of formalized mathematics (section 2). This leads us to a general discussion about the links between architecture and mathematics where a meeting of minds is revealed between architects and mathematicians (section 3). On the way our odyssey from the foundations to the "horizon" of mathematics will lead us to meet the mathematicians David Hilbert and Nicolas Bourbaki as well as the architect Christopher Alexander
    • …
    corecore