8 research outputs found

    Interplanetary Protons versus Interacting Protons in the 2017 September 10 Solar Eruptive Event

    Get PDF
    We analyze the relativistic proton emission from the Sun during the eruptive event on 2017 September 10, which caused a ground-level enhancement (GLE 72) registered by the worldwide network of neutron monitors. Using the neutron monitor data and interplanetary transport modeling both along and across interplanetary magnetic field (IMF) lines, we deduce parameters of the proton injection into the interplanetary medium. The inferred injection profile of the interplanetary protons is compared with the profile of the >100 MeV γ-ray emission observed by the Fermi Large Area Telescope, attributed to pion production from the interaction of >300 MeV protons at the Sun. GLE 72 started with a prompt component that arrived along the IMF lines. This was followed by a more prolonged enhancement caused by protons arriving at the Earth across the IMF lines from the southwest. The interplanetary proton event is modeled using two sources—one source at the root of the Earth-connected IMF line and another source situated near the solar western limb. The maximum phase of the second injection of interplanetary protons coincides with the maximum phase of the prolonged >100 MeV γ-ray emission that originated from a small area at the solar western limb, below the current sheet trailing the associated coronal mass ejection (CME). A possible common source of interacting protons and interplanetary protons is discussed in terms of proton acceleration at the CME bow shock versus coronal (re-)acceleration in the wake of the CME

    Why Are Most Ground Level Events Associated with High Fe/O Ratios?

    No full text
    In a seminal paper about Ground Level Events (GLEs), Dietrich and Lopate (1999) reported on 24 GLEs from April, 1973 to May, 1998. They noted that alt but one of these GLEs, June 15, 1991, were associated with a Solar Energetic Particle (SEP) event with an enhanced Fe/O ratio. The Fe/O ratio observed for the June 15, 1991 event was only 0.03, well below the nominal coronal abundance of Fe/O = 0.134. For the remaining events, Fe/O ranged from 0.27 to over 3, welt over the nominal coronal value. During Solar Cycle 23, 14 more GLEs were observed, only one of which had very low Fe/O. This was the event of January 20, 2005, the largest ground-level neutron monitor event in 49 years. We will report on our efforts to find out whether the events of June 15, 1991 and January 20, 2005 have features in common, besides high Fe/O, that distinguish them from all other GLE events and may help determine the cause of elevated Fe/O in almost all GLE events. We will use energetic particle, magnetic field, and solar wind plasma data from NASA's IMP-8 Wind, and ACE spacecraft

    Solar Flares, Type III Radio Bursts, Coronal Mass Ejections, and Energetic Particles

    No full text
    In this correlative study between greater than 20 MeV solar proton events, coronal mass ejections (CMEs), flares, and radio bursts it is found that essentially all of the proton events are preceded by groups of type III bursts and all are preceded by CMEs. These type III bursts (that are a flare phenomenon) usually are long-lasting, intense bursts seen in the low-frequency observations made from space. They are caused by streams of electrons traveling from close to the solar surface out to 1 AU. In most events the type III emissions extend into, or originate at, the time when type II and type IV bursts are reported (some 5 to 10 minutes after the start of the associated soft X-ray flare) and have starting frequencies in the 500 to approximately 100 MHz range that often get lower as a function of time. These later type III emissions are often not reported by ground-based observers, probably because of undue attention to type II bursts. It is suggested to call them type III-1. Type III-1 bursts have previously been called shock accelerated (SA) events, but an examination of radio dynamic spectra over an extended frequency range shows that the type III-1 bursts usually start at frequencies above any type II burst that may be present. The bursts sometimes continue beyond the time when type II emission is seen and, furthermore, sometimes occur in the absence of any type II emission. Thus the causative electrons are unlikely to be shock accelerated and probably originate in the reconnection regions below fast CMEs. A search did not find any type III-1 bursts that were not associated with CMEs. The existence of low-frequency type III bursts proves that open field lines extend from within 0.5 radius of the Sun into the interplanetary medium (the bursts start above 100 MHz, and such emission originates within 0.5 solar radius of the solar surface). Thus it is not valid to assume that only closed field lines exist in the flaring regions associated with CMEs and some interplanetary particles originating in such flare regions might be expected in all solar particle events
    corecore