24 research outputs found

    Diffuse alveolar hemorrhage after hematopoietic cell transplantation- response to treatments and risk factors for mortality

    Get PDF
    Diffuse alveolar hemorrhage (DAH) is a life-threatening complication of hematopoietic cellular therapy (HCT). This study aimed to evaluate the effect of DAH treatments on outcomes using data from consecutive HCT patients clinically diagnosed with DAH from 3 institutions between January 2018-August 2022. Endpoints included sustained complete response (sCR) defined as bleeding cessation without recurrent bleeding, and non-relapse mortality (NRM). Forty children developed DAH at a median of 56.5 days post-HCT (range 1-760). Thirty-five (88%) had at least one concurrent endothelial disorder, including transplant-associated thrombotic microangiopathy (n=30), sinusoidal obstructive syndrome (n=19), or acute graft versus host disease (n=10). Fifty percent had a concurrent pulmonary infection at the time of DAH. Common treatments included steroids (n=17, 25% sCR), inhaled tranexamic acid (INH TXA,n=26, 48% sCR), and inhaled recombinant activated factor VII (INH fVIIa, n=10, 73% sCR). NRM was 56% 100 days after first pulmonary bleed and 70% at 1 year. Steroid treatment was associated with increased risk of NRM (HR 2.25 95% CI 1.07-4.71, p=0.03), while treatment with INH TXA (HR 0.43, 95% CI 0.19- 0.96, p=0.04) and INH fVIIa (HR 0.22, 95% CI 0.07-0.62, p=0.005) were associated with decreased risk of NRM. Prospective studies are warranted to validate these findings

    The impact and significance of tephra deposition on a Holocene forest environment in the North Cascades, Washington, USA.

    Get PDF
    © 2016 Elsevier Ltd. High-resolution palaeoecological analyses (stratigraphy, tephra geochemistry, radiocarbon dating, pollen and ordination) were used to reconstruct a Holocene vegetation history of a watershed in the Pacific Northwest of America to evaluate the effects and duration of tephra deposition on a forest environment and the significance of these effects compared to long-term trends. Three tephra deposits were detected and evaluated: MLF-T158 and MLC-T324 from the climactic eruption of Mount Mazama, MLC-T480 from a Late Pleistocene eruption of Mount Mazama and MLC-T485 from a Glacier Peak eruption. Records were examined from both the centre and fringe of the basin to elucidate regional and local effects. The significance of tephra impacts independent of underlying long-term trends was confirmed using partial redundancy analysis. Tephra deposition from the climactic eruption of Mount Mazama approximately 7600 cal. years BP caused a significant local impact, reflected in the fringe location by changes to open habitat vegetation (Cyperaceae and Poaceae) and changes in aquatic macrophytes (Myriophyllum spicatum, Potamogeton, Equisetum and the alga Pediastrum). There was no significant impact of the climactic Mazama tephra or other tephras detected on the pollen record of the central core. Changes in this core are potentially climate driven. Overall, significant tephra fall was demonstrated through high resolution analyses indicating a local effect on the terrestrial and aquatic environment, but there was no significant impact on the regional forest dependent of underlying environmental changes

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways

    Get PDF

    Clinical utilization of blinatumomab and inotuzumab immunotherapy in children with relapsed or refractory B‐acute lymphoblastic leukemia

    No full text
    BackgroundThe treatment paradigm for patients with relapsed/refractory B-cell acute lymphoblastic leukemia (rrALL) has been revolutionized given recent clinical trials demonstrating remarkable success of immunotherapies and leading to drug approvals by United States and European agencies. We report experience with commercial blinatumomab and inotuzumab use at two North American pediatric oncology centers in children and adolescents/young adults with B-ALL.ProcedurePatients 0-25 years old treated with the CD19 × CD3 bispecific T cell-engaging antibody blinatumomab and/or the CD22 antibody-drug conjugate inotuzumab from January 1, 2010, to June 1, 2018, were eligible. Disease status included relapsed B-ALL in second or greater relapse, primary chemotherapy-refractory B-ALL, or B-ALL complicated by severe infection precluding delivery of conventional chemotherapy.ResultsWe identified 27 patients who received blinatumomab and/or inotuzumab outside of clinical trials during the study period. Four of the 13 patients (31%) with relapsed disease achieved minimal residual disease (MRD)-negative remission, and five patients (39%) underwent hematopoietic stem cell transplant (HSCT). In the 12 patients with primary chemorefractory B-ALL treated with immunotherapy, 11 (92%) achieved MRD-negative remission as assessed by flow cytometry; 10 patients (83%) underwent subsequent HSCT. Two patients with B-ALL in MRD-negative remission received blinatumomab due to severe infection and remained in remission after chemotherapy continuation.ConclusionsBlinatumomab and inotuzumab can induce deep remissions in patients with rrALL and facilitate subsequent HSCT or other cellular therapies. Blinatumomab can also serve as an effective bridging therapy during severe infection. The optimal timing, choice of immunotherapeutic agent(s), and duration of responses require further investigation via larger-scale clinical trials

    Pre‐and post‐HSCT use of TKI therapy for fusion‐driven B‐ALL: A case series of five pediatric, adolescent and young adult patients

    No full text
    Abstract Background The development of tyrosine kinase inhibitors (TKIs) has significantly improved survival rates among patients with Philadelphia chromosome (Ph+) B cell acute lymphoblastic leukemia (B‐ALL). Ph‐like B‐ALL patients lack the BCR::ABL1 translocation but share gene expression profiles with Ph+ B‐ALL. The role of TKIs for Ph‐like patients pre‐ and post‐hematopoietic stem cell transplantation (HSCT) is not yet clear. Case Here we present five cases of pediatric, adolescent, and young adult patients who presented with Ph‐like B‐ALL or CML in B‐ALL blast phase who were treated with personalized TKI regimens pre‐ and post‐HSCT. Conclusion This report describes several novel Ph‐like fusions as well as combinations of TKIs with chemotherapy or immunotherapy not yet reported in the pediatric population. This case series provides real‐world experience highlighting the potential application of pre‐ and post‐HSCT use of TKIs in a subset of patients with targetable fusions
    corecore