338 research outputs found

    Equivariant cohomology over Lie groupoids and Lie-Rinehart algebras

    Get PDF
    Using the language and terminology of relative homological algebra, in particular that of derived functors, we introduce equivariant cohomology over a general Lie-Rinehart algebra and equivariant de Rham cohomology over a locally trivial Lie groupoid in terms of suitably defined monads (also known as triples) and the associated standard constructions. This extends a characterization of equivariant de Rham cohomology in terms of derived functors developed earlier for the special case where the Lie groupoid is an ordinary Lie group, viewed as a Lie groupoid with a single object; in that theory over a Lie group, the ordinary Bott-Dupont-Shulman-Stasheff complex arises as an a posteriori object. We prove that, given a locally trivial Lie groupoid G and a smooth G-manifold f over the space B of objects of G, the resulting G-equivariant de Rham theory of f boils down to the ordinary equivariant de Rham theory of a vertex manifold relative to the corresponding vertex group, for any vertex in the space B of objects of G; this implies that the equivariant de Rham cohomology introduced here coincides with the stack de Rham cohomology of the associated transformation groupoid whence this stack de Rham cohomology can be characterized as a relative derived functor. We introduce a notion of cone on a Lie-Rinehart algebra and in particular that of cone on a Lie algebroid. This cone is an indispensable tool for the description of the requisite monads.Comment: 47 page

    Three-body non-additive forces between spin-polarized alkali atoms

    Full text link
    Three-body non-additive forces in systems of three spin-polarized alkali atoms (Li, Na, K, Rb and Cs) are investigated using high-level ab initio calculations. The non-additive forces are found to be large, especially near the equilateral equilibrium geometries. For Li, they increase the three-atom potential well depth by a factor of 4 and reduce the equilibrium interatomic distance by 0.9 A. The non-additive forces originate principally from chemical bonding arising from sp mixing effects.Comment: 4 pages, 3 figures (in 5 files

    Galois theory and commutators

    Full text link
    We prove that the relative commutator with respect to a subvariety of a variety of Omega-groups introduced by the first author can be described in terms of categorical Galois theory. This extends the known correspondence between the Froehlich-Lue and the Janelidze-Kelly notions of central extension. As an example outside the context of Omega-groups we study the reflection of the category of loops to the category of groups where we obtain an interpretation of the associator as a relative commutator.Comment: 14 page

    The influence of the preparation methods on the inclusion of model drugs in a β-cyclodextrin cavity

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in European Journal of Pharmaceutics and Biopharmaceutics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Eur J Pharm Biopharm. 2009 Feb;71(2):377-386. Epub 2008 Oct 17.The work aims to prove the complexation of two model drugs (ibuprofen, IB and indomethacin, IN) by bcyclodextrin (bCD), and the effect of water in such a process, and makes a comparison of their complexation yields. Two methods were considered: kneading of a binary mixture of the drug, bCD, and inclusion of either IB or IN in aqueous solutions of bCD. In the latter method water was removed by air stream, spray-drying and freeze-drying. To prove the formation of complexes in final products, optical microscopy, UV spectroscopy, IR spectroscopy, DSC, X-ray and NMR were considered. Each powder was added to an acidic solution (pH = 2) to quantify the concentration of the drug inside bCD cavity. Other media (pH = 5 and 7) were used to prove the existence of drug not complexed in each powder, as the drugs solubility increases with the pH. It was observed that complexation occurred in all powders, and that the fraction of drug inside the bCD did not depend neither on the method of complexation nor on the processes of drying considered

    Predicting the cost of the consequences of a large nuclear accident in the UK

    Get PDF
    Nuclear accidents have the potential to lead to significant off-site effects that require actions to minimise the radiological impacts on people. Such countermeasures may include sheltering, evacuation, restrictions on the sale of locally-grown food, and long-term relocation of the population amongst others. Countries with nuclear facilities draw up emergency preparedness plans, and put in place such provisions as distributing instructions and iodine prophylaxis to the local population. Their plans are applied in simulated exercises on a regular basis. The costs associated with emergency preparedness and the safety provisions to reduce the likelihood of an accident, and/or mitigate the consequences, are justified on the basis of the health risks and accident costs averted. There is, of course, only limited actual experience to indicate the likely costs so that much of the costing of accidents is based on calculations. This paper reviews the methodologies used, in particular the approach that has been developed in the UK, to appraise the costs of a hypothetical nuclear accident. Results of analysing a hypothetical nuclear accident at a fictitious reactor site within the United Kingdom are discussed in relation to the accidents at Three Mile Island 2, Chernobyl and Fukushima Dai-ichi

    From Atiyah Classes to Homotopy Leibniz Algebras

    Full text link
    A celebrated theorem of Kapranov states that the Atiyah class of the tangent bundle of a complex manifold XX makes TX[1]T_X[-1] into a Lie algebra object in D+(X)D^+(X), the bounded below derived category of coherent sheaves on XX. Furthermore Kapranov proved that, for a K\"ahler manifold XX, the Dolbeault resolution Ω1(TX1,0)\Omega^{\bullet-1}(T_X^{1,0}) of TX[1]T_X[-1] is an LL_\infty algebra. In this paper, we prove that Kapranov's theorem holds in much wider generality for vector bundles over Lie pairs. Given a Lie pair (L,A)(L,A), i.e. a Lie algebroid LL together with a Lie subalgebroid AA, we define the Atiyah class αE\alpha_E of an AA-module EE (relative to LL) as the obstruction to the existence of an AA-compatible LL-connection on EE. We prove that the Atiyah classes αL/A\alpha_{L/A} and αE\alpha_E respectively make L/A[1]L/A[-1] and E[1]E[-1] into a Lie algebra and a Lie algebra module in the bounded below derived category D+(A)D^+(\mathcal{A}), where A\mathcal{A} is the abelian category of left U(A)\mathcal{U}(A)-modules and U(A)\mathcal{U}(A) is the universal enveloping algebra of AA. Moreover, we produce a homotopy Leibniz algebra and a homotopy Leibniz module stemming from the Atiyah classes of L/AL/A and EE, and inducing the aforesaid Lie structures in D+(A)D^+(\mathcal{A}).Comment: 36 page

    Scale-free static and dynamical correlations in melts of monodisperse and Flory-distributed homopolymers: A review of recent bond-fluctuation model studies

    Full text link
    It has been assumed until very recently that all long-range correlations are screened in three-dimensional melts of linear homopolymers on distances beyond the correlation length ξ\xi characterizing the decay of the density fluctuations. Summarizing simulation results obtained by means of a variant of the bond-fluctuation model with finite monomer excluded volume interactions and topology violating local and global Monte Carlo moves, we show that due to an interplay of the chain connectivity and the incompressibility constraint, both static and dynamical correlations arise on distances rξr \gg \xi. These correlations are scale-free and, surprisingly, do not depend explicitly on the compressibility of the solution. Both monodisperse and (essentially) Flory-distributed equilibrium polymers are considered.Comment: 60 pages, 49 figure

    Nonlinear wave transmission and pressure on the fixed truncated breakwater using NURBS numerical wave tank

    Full text link
    Fully nonlinear wave interaction with a fixed breakwater is investigated in a numerical wave tank (NWT). The potential theory and high-order boundary element method are used to solve the boundary value problem. Time domain simulation by a mixed Eulerian-Lagrangian (MEL) formulation and high-order boundary integral method based on non uniform rational B-spline (NURBS) formulation is employed to solve the equations. At each time step, Laplace equation is solved in Eulerian frame and fully non-linear free-surface conditions are updated in Lagrangian manner through material node approach and fourth order Runge-Kutta time integration scheme. Incident wave is fed by specifying the normal flux of appropriate wave potential on the fixed inflow boundary. To ensure the open water condition and to reduce the reflected wave energy into the computational domain, two damping zones are provided on both ends of the numerical wave tank. The convergence and stability of the presented numerical procedure are examined and compared with the analytical solutions. Wave reflection and transmission of nonlinear waves with different steepness are investigated. Also, the calculation of wave load on the breakwater is evaluated by first and second order time derivatives of the potential
    corecore