167 research outputs found

    Simultaneous Prediction of the Magnetic and Crystal Structure of Materials Using a Genetic Algorithm

    Get PDF
    We introduce a number of extensions and enhancements to a genetic algorithm for crystal structure prediction, to make it suitable to study magnetic systems. The coupling between magnetic properties and crystal structure means that it is essential to take a holistic approach, and we present for the first time, a genetic algorithm that performs a simultaneous global optimisation of both magnetic structure and crystal structure. We first illustrate the power of this approach on a novel test system—the magnetic Lennard–Jones potential—which we define. Then we study the complex interface structures found at the junction of a Heusler alloy and a semiconductor substrate as found in a proposed spintronic device and show the impact of the magnetic interface structure on the device performance

    Establishing a persistent interoperability test-bed for European geospatial research

    Get PDF
    The development of standards for geospatial web services has been spearheaded by the Open Geospatial Consortium (OGC) - a group of over 370 private, public and academic organisations (OGC, 1999-2009). The OGC aims to facilitate interoperability between geospatial technologies through education, standards and other initiatives. The OGC Service Architecture, described in the international standard ISO 19119, offers an abstract specification for web services covering data dissemination, processing, portrayal, workflows and other areas. The development of specifications covering each of these categories of web services has led to a significant number of geospatial data and computational services available on the World Wide Web (the Web). A project1 to establish a persistent geospatial interoperability test-bed (PTB) was commissioned in 2007 by the Association of Geographic Information Laboratories in Europe (AGILE), Commission 5 (Networks) of the European Spatial Data Research (EuroSDR) organisation and the OGC

    The management of children with bronchiolitis in the Australasian hospital setting: Development of a clinical practice guideline

    Get PDF
    © 2018 The Author(s). Background: Bronchiolitis is the commonest respiratory infection in children less than 12 months and cause of hospitalisation in infants under 6 months of age in Australasia. Unfortunately there is substantial variation in management, despite high levels of supporting evidence. This paper reports on the process, strengths and challenges of the hybrid approach used to develop the first Australasian management guideline relevant to the local population. Method: An adaption of the nine steps recommended by the National Health and Medical Research Council (NHMRC) and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology were utilised. Following establishment of the Guideline Development Committee (GDC), we identified the population, intervention, comparator, outcomes and time of interest (PICOt) questions, undertook a systematic literature search and graded the evidence and recommendations using the NHMRC and GRADE processes. Using Nominal Group Techniques (NGT), consensus was sought in formulating the clinical practice recommendations and practice points. Key health professional bodies were consulted to ensure relevance in the Australasian emergency and ward settings. Results: From 33 PICOT questions, clinical recommendations for practice that were deemed relevant to the Australasian population were identified. Specific considerations for the management of Australian and New Zealand indigenous infants in relation to the use of azithromycin and risk factors for more serious illness are included. Using NGT, consensus demonstrated by a median Likert score > 8 for all recommendations was achieved. The guideline presents clinical guidance, followed by the key recommendations and evidence review behind each recommendation. Conclusion: Developing evidence-based clinical guidelines is a complex process with considerable challenges. Challenges included having committee members located over two countries and five time zones, large volume of literature and variation of member's knowledge of grading of evidence and recommendations. The GRADE and NHMRC processes provided a systematic and transparent approach ensuring a final structure including bedside interface, and a descriptive summary of the evidence base and tables for each key statement. Involvement of stakeholders who will ultimately be end-users as members of the GDC provided valuable knowledge. Lessons learnt during this guideline development process provide valuable insight for those planning development of evidence-based guidelines

    Molecular modeling of a tandem two pore domain potassium channel reveals a putative binding Site for general anesthetics

    No full text
    [Image: see text] Anesthetics are thought to mediate a portion of their activity via binding to and modulation of potassium channels. In particular, tandem pore potassium channels (K2P) are transmembrane ion channels whose current is modulated by the presence of general anesthetics and whose genetic absence has been shown to confer a level of anesthetic resistance. While the exact molecular structure of all K2P forms remains unknown, significant progress has been made toward understanding their structure and interactions with anesthetics via the methods of molecular modeling, coupled with the recently released higher resolution structures of homologous potassium channels to act as templates. Such models reveal the convergence of amino acid regions that are known to modulate anesthetic activity onto a common three- dimensional cavity that forms a putative anesthetic binding site. The model successfully predicts additional important residues that are also involved in the putative binding site as validated by the results of suggested experimental mutations. Such a model can now be used to further predict other amino acid residues that may be intimately involved in the target-based structure–activity relationships that are necessary for anesthetic binding

    Tundra microbial community taxa and traits predict decomposition parameters of stable, old soil organic carbon.

    Get PDF
    The susceptibility of soil organic carbon (SOC) in tundra to microbial decomposition under warmer climate scenarios potentially threatens a massive positive feedback to climate change, but the underlying mechanisms of stable SOC decomposition remain elusive. Herein, Alaskan tundra soils from three depths (a fibric O horizon with litter and course roots, an O horizon with decomposing litter and roots, and a mineral-organic mix, laying just above the permafrost) were incubated. Resulting respiration data were assimilated into a 3-pool model to derive decomposition kinetic parameters for fast, slow, and passive SOC pools. Bacterial, archaeal, and fungal taxa and microbial functional genes were profiled throughout the 3-year incubation. Correlation analyses and a Random Forest approach revealed associations between model parameters and microbial community profiles, taxa, and traits. There were more associations between the microbial community data and the SOC decomposition parameters of slow and passive SOC pools than those of the fast SOC pool. Also, microbial community profiles were better predictors of model parameters in deeper soils, which had higher mineral contents and relatively greater quantities of old SOC than in surface soils. Overall, our analyses revealed the functional potential of microbial communities to decompose tundra SOC through a suite of specialized genes and taxa. These results portray divergent strategies by which microbial communities access SOC pools across varying depths, lending mechanistic insights into the vulnerability of what is considered stable SOC in tundra regions

    Lifetime measurements of excited states in Âč⁶³W and the implications for the anomalous B(E2) ratios in transitional nuclei

    Get PDF
    This letter reports lifetime measurements of excited states in the odd-N nucleus 163W using the recoil-distance Doppler shift method to probe the core polarising effect of the i13/2 neutron orbital on the underlying soft triaxial even-even core. The ratio B(E2:21/2âș → 17/2âș)/B(E2:17/2âș → 13/2âș) is consistent with the predictions of the collective rotational model. The deduced B(E2) values provide insights into the validity of collective model predictions for heavy transitional nuclei and a geometric origin for the anomalous B(E2) ratios observed in nearby even-even nuclei is proposed
    • 

    corecore