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Abstract: We introduce a number of extensions and enhancements to a genetic algorithm for crystal
structure prediction, to make it suitable to study magnetic systems. The coupling between magnetic
properties and crystal structure means that it is essential to take a holistic approach, and we present
for the first time, a genetic algorithm that performs a simultaneous global optimisation of both
magnetic structure and crystal structure. We first illustrate the power of this approach on a novel
test system—the magnetic Lennard–Jones potential—which we define. Then we study the complex
interface structures found at the junction of a Heusler alloy and a semiconductor substrate as found
in a proposed spintronic device and show the impact of the magnetic interface structure on the device
performance.

Keywords: structure prediction; magnetic materials; genetic algorithm; global optimisation; ab initio;
DFT; structural fingerprint; magnetic Lennard–Jones; Heusler alloy; half-Heusler alloy

1. Introduction

In order to meet the challenges posed by modern and emerging technologies, it is increasingly
necessary to look beyond existing, known materials. Many fields, from solar cells to spintronic
devices, call for materials with unprecedented performance characteristics, or even entirely new
behavior. Searching for new materials experimentally is expensive and time-consuming, but the advent
of efficient, accurate computational materials modeling offers a potential way forward. Magnetic
materials are of particular interest, with applications from fast, high-density data storage such as
magnetic RAM devices [1] and heat-assisted magnetic recording (HAMR) [2], to new spintronic and
quantum devices, such as spin-valves [3,4]. Magnetic materials include conventional ferromagnets
along with more exotic structures, such as antiferromagnets, ferrimagnets, and spin glasses. These
materials are already at the heart of many important technologies, but play an increasingly important
role in developing and future technologies.

Many of the strong permanent magnets in use today rely on rare-earth elements [5] and there is
concern over the sustainability of these elements’ availability [6]. Therefore, developing ferromagnets
made from more readily available materials is desirable.

In order to determine a material’s properties, it is not sufficient to know its chemical composition,
it is also vital to understand the crystal structure of the material. In general, atoms will arrange
themselves in a material so as to minimise the total (free) energy. One method to determine crystal
structure is to estimate an initial atomic configuration, compute the atomic forces and lattice cell stress
according to a suitable model, and then adjust the atomic positions and lattice parameters in order
to minimise the energy (where the forces and stresses are zero). This procedure works well if the
initial geometry is sufficiently close to the true ground state, and this workflow has been the backbone
of computational materials studies for many decades. However, the resultant optimised structure
only represents the local energy minimum; that is, this procedure finds the lowest energy structure
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which is closest to the initial geometry. It is possible that a lower-energy structure exists, but that it is
separated from the initial geometry by an energy barrier which the local optimisation procedure will
not overcome. This situation is depicted in Figure 1.
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Figure 1. An example of global (A) and local (B, C) minima for a function f (x). The dashed lines mark
the boundaries between the different basins of attraction. A local minimisation method will find a
different minimum (A, B or C) depending upon which basin of attraction the starting point (1) is in.
Note: point (1) is closer in x to B, but is in the basin of attraction of A.

In fact, many materials do possess a range of low-energy phases, and determining the stable
phase(s) under given environmental conditions is extremely challenging, even for well-studied classes
of materials. In general, finding the full range of stable phases requires a global optimisation method,
usually involving a wide range of simulations, encompassing atomic configurations which span all the
possible phases. Developing global optimisation methods is an active research field in materials
modelling, and existing methods include basin hopping [7–9], random structure searching [10],
meta-dynamics [11], swarm optimisation [12] and evolutionary algorithms. The latter class includes
genetic algorithms [13–16], which have met with great success in materials modelling and are the focus
of this work.

Conventional global optimisation methods for crystal structure prediction often work in the
basis of the atomic positions and lattice vectors. However when considering systems with nontrivial
magnetic structures, this representation leads to a multi-valued energy landscape to search, even when
the crystal structure itself is relatively well-established. As a result of this, conventional algorithms can
struggle when it comes to searching the combined phase space of magnetic- and crystal-structures for
magnetic materials.

Therefore, in this work, we present a novel genetic algorithm (GA) for the simultaneous global
optimisation of both the magnetic structure and the crystal structure of a material. We shall explain the
key ideas, and then illustrate with two example studies. The first is a new model system, suitable for
the study of magnetic systems at the atomic scale—the magnetic Lennard-Jones potential. Whilst the
conventional Lennard–Jones potential is a well-known test system for many structural and dynamical
algorithms, it has not yet (to our knowledge) been extended to study magnetic systems. We shall
introduce this system and explore some of its fundamental behaviour as a means to test our new
magnetic GA. The second system we shall study is more complex, and is inspired by recent experiments
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on spintronic systems, and is an interface between a Heusler alloy and a Ge substrate. We shall use the
magnetic GA to find the optimal interface structure and show how the novel predicted structure can
explain the experimental data.

2. Materials and Methods

2.1. Materials Modelling

The first step in finding a stable crystal structure is to have a reasonable model for the energy of
any particular atomic configuration. There are two main classes of models in this context: classical
forcefields; and quantum mechanical methods.

Classical forcefields are multivariate functions which take the atomic species and positions as
input, and return the internal energy of the system and the atomic forces (the first derivative of the
energy with respect to the atomic positions). Since atomic interactions depend on the positions of
the atoms relative to each other, rather than the absolute positions themselves, forcefields are usually
expressed in terms of bond lengths and, depending on the particular forcefield, bond angles and bond
torsions. One of the earliest and simplest interatomic forcefields was proposed by Lennard–Jones [17],
and expresses the energy ELJ of an atomic configuration as

ELJ = ∑
i,j 6=i

4ǫij





(

σij

rij

)12

−

(

σij

rij

)6


, (1)

where rij is the distance between atoms i and j and ǫij and σij are parameters of the potential which
control the equilibrium bond energy and bond-length, respectively.

Forcefields are generally computationally cheap and simulations of millions of atoms may be
carried out routinely. The main drawbacks of forcefield methods are the need to select and parameterise
an appropriate forcefield for the material, and the inability of most forcefields to model dynamic
changes in chemistry such as bond breaking or formation.

Quantum mechanical approaches centre on solving the many-body Schrödinger equation for the
electrons and nuclei which comprise the material. These approaches have two principal advantages
over forcefield methods: they are parameter-free since the form of the Schrödinger equation is
known exactly; and by modeling the electrons explicitly, the approaches handle seamlessly chemical
complexities such as bond formation and breaking, or environmentally-dependent oxidation states.
There is one significant drawback, however, in that this is an extremely computationally intensive
task and solving the many-body Schrödinger equation in its original form is unfeasible for materials.
Most practical quantum-mechanical materials simulations are based on a reformulation of quantum
mechanics known as density functional theory (DFT).

DFT is founded on the Hohenberg-Kohn theorem [18], which proves that the ground state energy
of a many-body quantum system is a unique, universal functional of the particle density and has no
explicit dependence on the many-body wavefunction. Kohn and Sham [19] used this to demonstrate a
formal link between the ground state of the many-body Schrödinger equation, and the ground state of
a related auxiliary set of coupled single-particle equations. Crucially, these auxiliary equations may be
solved with far less computational resources than the original many-body expressions [20,21].

In principle the mapping between the many-body system and the auxiliary system is exact,
but there is one term in the auxiliary equations which is unknown: the exchange-correlation potential.
The exchange-correlation potential must be approximated in practical calculations, with the most
common approximations being built on known limits and numerically-exact results for weakly
interacting electron gases, e.g., the approximation of Perdew, Burke and Ernzerhof [22]. Despite these
approximations, DFT has enjoyed popularity and great success in a wide range of materials
simulations [23,24].



Crystals 2019, 9, 439 4 of 19

2.2. Genetic Algorithms

A common solution to the need for global energy optimisation is to use an ensemble,
or ‘population’, of starting atomic geometries. Each of these candidate geometries can then be
optimised independently with a local optimisation method, in an attempt to map out the possible
local minima. Since the initial geometries are unlikely to span enough of the configuration space to
find all the local minima, the geometries are typically updated in order to explore other regions of the
configuration space. Due to the independent nature of these members, population-based methods
often have more scope for parallelism than other methods.

One popular class of population-based methods for structure prediction is that of genetic
algorithms (GAs) [13–16]. In these algorithms, the ‘fitness’ of members of a population is evaluated in
some appropriate manner (e.g., from the binding energy per atom) in an attempt to decide which of
them are most likely to find solutions of interest. The population is then updated by selecting favorable
(e.g., low-energy) members of the population, and generating new population members by combining
these members to produce ‘child’ members, a process known as ‘crossover’, followed by some random
mutation(s). Depending on the problem at hand, a variety of methods exist for this fitness evaluation,
member recombination, and selection stages.

When considering how to represent an optimisation problem for a genetic algorithm, a choice
needs to be made about how the search vector is to be represented for these operations. A simple GA
may treat the input vector simply as a 1D array of real numbers or as a bit string representing that
vector. However, it is often the case that a more physically meaningful representation of the search
vector can improve the convergence characteristics of the algorithm. In addition to pure GAs, a number
of hybrid GAs exist, incorporating ideas from other algorithms. For example, memetic algorithms
allow each member of the population to perform local searches.

In this work, we started from the GA developed by Abraham and Probert [14], which was
created specifically for the prediction of crystal structures in periodic boundary conditions. In this GA,
the crossover is performed in real-space by using a pair of periodic cuts to select material from each
parent structure. This material is combined to form child structures, as illustrated in Figure 2.

Figure 2. Real-space crossover of two unit cells, each containing six atoms across two different atomic
elements (black and white circles) in two dimensions using a pair of periodic cuts (dashed lines).
The cuts define two sets of atoms for each of the parents (left): the ‘inner’ set comprises atoms lying
between the two cuts; and the ‘outer’ set comprises the remainder of the atoms. Child structures (right)
are formed by combining atoms from the ‘inner’ set of one parent, with those from the ‘outer’ set of the
other parent.
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Following crossover, the child structures are mutated before a local optimisation method is
performed. Several different types of mutations are allowed: deformation of the cell vectors;
perturbations of the atomic positions; and inter-atomic swaps (see Figure 3). Mutations are important
to GAs, as they are the only way of introducing fundamentally new structural features which are not
present in previous populations.

Figure 3. Example of mutation operations on one of the child structures from Figure 2. The original
cell (top left) can be mutated by: changing the cell vectors (top right); perturbing the atomic positions
(bottom left); or permuting the atoms (bottom right).

Once the local optimisation method has optimised all of the population structures, the fitness of
the structures is evaluated. Based on the fitness, some structures are removed from the population
(preferentially those with low fitness) and some structures are chosen for crossover (preferentially
those with high fitness).

One potential weakness of the method outlined thus far is the tendency of population members
to become more and more similar, a process known as ‘stagnation’. In extreme cases, every single
population member may converge to the same structure; this structure usually represents a stable,
low-energy phase but it is not necessarily the global minimum-energy structure, and once a population
has stagnated it is almost impossible for it to diversify again significantly.

In order to prevent stagnation, the GA was extended in Ref. [25,26] to incorporate a structure-factor
based fingerprinting technique, which enables the GA to differentiate structures in order to penalise
structures that are too similar, lowering their fitness and encouraging diversity within the population.
For a given structure x containing N atoms, the (non-magnetic) fingerprint is defined as:

Λ(k) =
N

∑
i=1

ρ
2
i + 2

N

∑
i=1

N

∑
j>i

ρiρj × j0
(
k|~ri −~rj|

)
, (2)

where ~ri is the position of atom i, ρi is the charge density of the nucleus of atom i, defined to be Zi

at~ri and zero elsewhere, and j0 is the spherical Bessel function of the first kind. For each structure,
the value of Λ is calculated for a range of values of wavenumber k.

Using this fingerprint, the difference between two structures can then be quantified, for example
using an R-factor inspired by the Pendry R-factor. Using this, the difference between two structures x

and x′ is defined as:

Rxx′ =
∑k |Λx(k)− Λx′(k)|

∑k Λx(k)
. (3)



Crystals 2019, 9, 439 6 of 19

2.3. Extending the GA for Magnetic Materials

A GA may be extended to optimise magnetic systems by the simple expedient of including
magnetic effects in the calculation of energies and forces, and allowing the local optimisation method
to minimise the energy with respect to the magnetic degrees of freedom as well as the crystal structure.
However, this naïve approach suffers from two severe problems: firstly, the magnetic energy landscape
itself has multiple minima, necessitating a global energy optimisation method; secondly, the magnetic
structure and crystal structure of a material are often coupled, and may not be treated independently
of each other. Elemental iron may be considered a prototypical example of both effects, possessing an
antiferromagnetic face-centred cubic phase in addition to the familiar ferromagnetic body-centred cubic
phase (see Figure 4). For these reasons it is important to consider the magnetic- and atomic-structure
of a material on an equal footing, and to be able to predict both simultaneously.
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Figure 4. Comparison of the binding energies per atom of iron in the face-centred cubic (FCC)
and body-centred cubic (BCC) structures, for ferromagnetic (FM), antiferromagnetic (AFM) and
non-magnetic (NM) arrangements of the atomic spins. This illustrates the importance of both crystal
structure and magnetic ordering on the overall stability of a magnetic system. Values from [27].

In order to account for magnetic effects within the GA itself, the magnetism needs to be included
within the representation of the structure and evolved using updated GA operations such as crossover
and mutations. For the representation of magnetism in the system, this work assigns an atomic spin
to each atom, which can be either an additional degree of freedom for collinear spin systems or an
additional three degrees of freedom for non-collinear spin systems. When considering DFT simulations,
spin information will typically be represented as the electronic spin density across all space. In order to
project this onto the atomic representation, Hirshfeld analysis [28] was used to partition the electronic
spin density into regions of space associated with each atom. This information can then be transmitted
from parent structures to offspring during the crossover operation.

2.3.1. Perturbation/Permutation Operations

In order for a GA to optimise the spins efficiently, mutation operations need to be extended to
also affect the spin degrees of freedom. This work defines two spin mutations: perturbation and
permutation of the atomic spins.

In the case of perturbations, a distinction needs to be made between collinear and non-collinear
spin systems. For collinear spin systems, there is only one scalar value per atom to optimise.
The perturbation therefore takes the same role as the atomic position perturbations, where the role
of the perturbation is to move the system from one basin of attraction to another. Since there is a
maximum value these spins can take, i.e., the total number of electrons associated with the atom, issues
may arise trying to add an additional perturbation to an existing spin. For example, an atom with
saturated spin given a positive perturbation will become unphysical. As a result, the spin perturbation
is evaluated as a uniform random number between -spin_max and spin_max, where spin_max is a
user parameter, set to the maximum spin value expected on any atom. For example, for a d-block
transition metal, spin_max should be set to 5 h̄/2, since the d shell is capable of having a maximum
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spin of 5 h̄/2. This perturbation allows atomic spins to spontaneously magnetise, demagnetise or flip,
irrespective of the initial value.

In the case of non-collinear spins, a similar procedure is performed. In this case, the atomic spin is
set to a random vector within the sphere of radius spin_max. Again, this allows any spin state to be
found by the perturbation within the range specified, without the risk of being stuck in a state based
on the structure’s history.

For permutations, the situation is analogous to swapping the atomic positions of different species.
However, since atomic spin is closely related to the crystal structure, it only makes sense to swap
atomic spins of atoms of the same species. For example, swapping the spin of a nickel and oxygen
atom in NiO makes no physical sense, since all the spin exists on the Ni atoms, and the O atoms
generally have zero spin.

Start

Read input cell 

& parameters

Generate initial 

configuration

Local optimise

each member

Fitness for

each member

Crossover to

make children

 

Select for 

crossover

Mutate

children

Local 
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Stop
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No
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Selected
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Figure 5. Schematic program flow of a genetic algorithm, as implemented in the CASTEP materials
modelling package.

We shall perform all our calculations using the general purpose DFT code CASTEP [29],
which relaxes the electronic charge density and spin (in either collinear or non-collinear form) to
find the electronic ground state. There may be multiple local minima with different spin configurations.
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Hence the input atomic spin from the GA is used to initialise the electron density, and CASTEP then
acts as a local optimiser for the atomic spin. This process may then be repeated as CASTEP performs a
geometry optimisation to find the (local) minimum energy configuration of atomic positions and cell
vectors (Figure 5).

2.3.2. Magnetic Fingerprinting

To encourage diversity in the population, it is important to be able to quantify the differences
between structures. In Abraham and Probert [25,26], a fingerprint was introduced that was
translationally and rotationally invariant, and could successfully distinguish different structures.
However, it will fail to distinguish two magnetic systems that have the same crystal structure but
a different arrangement of spins. Hence we propose an augmented fingerprint Λaug, inspired by
magnetic scattering experiments, that can differentiate magnetic structures [30]:

Λaug(k) = Λ(k) + q2Λmagn(k) (4)

where Λ(k) is the original crystal structure fingerprint as defined in Equation (2) and

Λmagn(k) =
N

∑
i=1

S2
i + 2

N

∑
i=1

N

∑
j>i

SiSj × j0
(
k|~ri −~rj|

)
(5)

is the magnetic structure fingerprint term. Here Si is the spin on atom i and q is some scaling parameter
which allows the overall fingerprint to be more or less sensitive with respect to differences in magnetic
structure and crystal structure.

The R-factor in Equation (3) can be used with this augmented fingerprint to quantify the difference
between two magnetic structures. As an example, the effect of perturbations on a 6-atom Fe unit cell
is shown in Figure 6. The black crosses represent the R-factor difference of structure with perturbed
atomic positions with respect to the original reference structure. The red squares and blue circles
represent similar perturbations with an additional perturbation to the atomic spins. Here a value
of q = 5 was used to make significantly different spin structures (∆S ≥ h̄/2) appear as different as
significantly different crystal structures (∆r > 0.2 Å), both of which can be represented by an R-factor
difference of Rxx′ > 0.03.

2.4. Case Studies

2.4.1. Fictional Magnetic Potential: LJ + S

In order to test the GA on magnetic systems, a pair-potential model including magnetic effects was
defined. Since a significant portion of these effects are intrinsically quantum mechanical or many-body
in nature, it is difficult to capture all of these effects in empirical potentials without limiting them to
some specific regime. Magnetic moments on isolated atoms tend to arise from partially filled electronic
states, as dictated by Hund’s rules. As a result, atoms with nonzero magnetic moments tend to be
polyvalent, causing an additional challenge to empirical pair potentials.

Since magnetic effects are often too complex to include explicitly in pair-potentials, their effects
are usually included implicitly through the mechanical and thermal properties used to parameterise
them [31]. There are some empirical potentials however that try to explicitly include magnetic
effects [31–33] and some machine learning models have been trained to deal with magnetic systems [34].
These models tend to require far more complex effects than simply pair-wise interactions.

Given all this, attempting to describe real magnetic materials using a pair-potential is beyond the
scope of this work. Instead, the spatial dependence of the energy from the standard (non-magnetic)
Lennard-Jones potential was combined with the magnetic dependence of the energy from the
lattice-based Heisenberg model in order to create a potential which behaves somewhat like a magnetic
material. This work defines a generalised magnetic Lennard-Jones potential as:
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VLJ+S
ij = VLJ

ij − A~Si · ~Sj fex(~Rij)
︸ ︷︷ ︸

Exchange term

+
B

|~Rij|3

[

~Si · ~Sj −
3

|~R2
ij|
(~Si · ~Rij)(~Sj · ~Rij)

]

︸ ︷︷ ︸

Dipole term

+C fani(~Rij,~Si,~Sj)
︸ ︷︷ ︸

Anisotropy term

(6)

In general, a magnetic material may have contributions to the potential from exchange between
sites i and j (with spatial dependence given by the fex(rij) term; a dipole-dipole interaction of the given
form; and a symmetry-dependent anisotropy term.
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Figure 6. R-factor difference (Equation (3)) comparing the magnetic fingerprints (Equation (4)) of
a 6-atom Fe unit cell to the same cell with a range of perturbations applied to the atomic positions.
In addition to just performing perturbations to the positions (black crosses), the processes was repeated
with an additional perturbation to the atomic spins (red squares and blue circles).

In this study, the magnetic GA was tested on a reduced form of this potential where B = C = 0
and fex = exp(−αrij). However this form of fex could be modified to include more complex forms
of the exchange interaction such as the RKKY interaction. The form of the potential used is shown
in Figure 7.

2.4.2. CFAS/n-Ge Interface

One material that is of interest for its magnetic properties is the full Heusler alloy Co2FeAl0.5Si0.5

(CFAS). CFAS is a half-metal and has been proposed as a candidate material for novel spintronic
applications such as spin valves and magnetic tunnel junctions. In order to use Heusler alloys for
device applications, the material needs to be attached to electrical contacts. For a number of spintronic
applications of Heusler alloys, both metallic and semiconducting contacts are required.

It is known that the half-metallic nature of Heusler alloys at the interface can be sensitive to
the exact configuration of the interface atoms, and this can affect the performance of the device.
For example, it is known that Co2MnSi (CMS) grown on a silver surface changes significantly
depending on whether it terminates with a Co layer or a Mn/Si layer [35].
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Figure 7. Analytic form of the LJ+S potential, showing the VLJ+S for aligned and anti-aligned spins
(solid black/red respectively), along with the contributions from the VLJ and magnetic terms (dashed
blue/green respectively). The difference in energy between aligned and antialigned pairs at rmin and
2rmin (d1 and d2 respectively) were derived from DFT calculations on an Fe dimer to parameterise
the potential.

For the CFAS/semiconductor interface, germanium provides an extremely good lattice match
with only a 0.2% mismatch, compared to around 4.5% for CFAS/Si. However, when CFAS is grown on
n-type germanium, significant mixing at the interface can occur, as evidenced by energy dispersive
X-ray spectroscopy (EDS) [36] (see Figure 8).
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Figure 8. Energy dispersive X-ray spectroscopy (EDS) results across the as-grown CFAS/n-Ge interface,
showing significant mixing of the atomic species. Data taken from Kuerbanjian et al. [36].
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In addition, annealing the sample at 575 K forms a plateau in the cobalt intensities and, to a
lesser extent, the iron and germanium intensities, as seen in the EDS results in Figure 9. This suggests
that a stable phase is forming at this point. Since this is in the centre of the interface region and all
the EDS intensities are about half of their respective bulk values, it is proposed that this structure
contains half the number of atoms in the bulk CFAS and half the number of atoms in a germanium
unit cell. This results in a potential Ge4Co4Fe2AlSi structure, containing 12 atoms in the formula unit,
although the crystal structure of this interface phase is unknown. Since the electronic properties of
this phase will affect the half-metallicity of the CFAS/n-Ge interface, the structure of this phase was
investigated using the new magnetic GA.
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Figure 9. EDS results across the annealed CFAS/n-Ge interface, showing significant mixing of the
atomic species. Plateaux can be seen around 6.5–8.6 nm in Co, Fe and Ge, indicated by the shaded
region. Data taken from Kuerbanjian et al. [36].

3. Results and Discussion

3.1. LJ+S

For real-world magnetic materials, it is often the exchange term which dominates the magnetic
interaction. Because of this, the work presented in this section will use a simplified version of the LJ+S
potential, ignoring the dipole and anisotropy terms (i.e., choosing B = C = 0) and using the simple
exchange interaction form fex = exp(−αrij).

In this case, only 2 parameters need to be chosen, A and α. As a result of this, the effect of the
magnetic modifications to the Lennard-Jones potential are to raise and/or lower the energy of aligned
and anti-aligned spins, depending on the sign of A. If A is positive, pairs of aligned spins will act to
lower the energy and anti-aligned spins will raise it. In this case, ferromagnetic magnetic structures
are expected to have the lowest energy, since aligned spins would act to decrease the total energy of
the system. If A is negative, pairs of anti-aligned spins will lower the energy and pairs of aligned spins
will raise it. In this case, antiferromagnetic structures are expected to have the lowest energy, since
aligned spins would act to increase the total energy of the system.

In order to get physically sensible values for A and α, they can be parameterised in a number
of ways. The way which has been chosen here is to parameterise the values to the equilibrium
distance rmin of an Fe dimer, along with the difference in energy at rmin and 2rmin between aligned and
anti-aligned dimers, as demonstrated in Figure 7. These values have been found by performing a DFT
calculation using the CASTEP code and fitting the results to the VLJ+S potential form (Equation (6)).
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3.1.1. Algorithm Performance

The magnetic GA was run on two different six-atom systems of the LJ+S potential. The first
used the parameters listed in Table 1 and the other had the same parameters but with the sign of
A inverted. This provides both a ferromagnetic and antiferromagnetic system on which to test the
algorithm. The GA was allowed to optimise the atomic positions, spins and lattice parameters. The GA
was run with population size of 24 members per generation, and ran for a maximum of 50 generations
for the FM case and 80 generations for the AFM case.

Table 1. Table listing the parameters for the ferromagnetic (FM) parameterisation of the LJ + S potential.

Parameter Value

εLJ+S 1.75 eV
σLJ+S 1.87 Å
A −2.82 eV
α 0.83 Å−1

Each member was locally optimised using the TPSD algorithm for 50 iterations of the local
optimisation to get into the quadratic region, then further converged with the BFGS algorithm.
The structures were converged to a tolerance of 1 meV. Since the LJ+S system spins could not be locally
optimised by CASTEP, the GA spin mutation operation was modified to be a normally distributed
rotation around the surface of the unit sphere, centring on the spin’s previous position.

A mutation amplitude of 2 Å was used for the ions, at a rate of 0.03 mutations per atom. This was
chosen to allow on average one atom every member to mutate, but significantly enough to hop lattice
sites. The spin mutation rate was 0.06 per atom, since the mutations in the spin would be less dramatic.

Figure 10 shows the enthalpies of each structure as a function of the sum of the z component of
the spins for both the AFM and FM parameterisations. It can be seen that, as the calculation progresses,
both the enthalpies and spins of each system converge to their stable states, i.e., ∑ Sz = 0 h̄/2 for the
AFM case and ∑ Sz = 6 h̄/2 for the FM case. Since the magnitude of the spins on each atom is kept
constant at |~Si| = 1h̄/2, these states correspond to fully AFM and fully FM structures respectively.
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Figure 10. Convergence of the enthalpy and spin (∑ Sz) for each structure found by the GA relative
to the ground state for the two parameterisations of the LJ + S potential: AFM (left) and FM (right).
The color represents the generation in which that structure was found.
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3.1.2. Final Structures

The final lowest enthalpy structures are shown in Figure 11. Common neighbour analysis
by the software visualisation package Ovito [37] reveals the ground state structure for the AFM
parameterisation to be face-centred cubic (FCC) and the ground state structure of the FM system to
be body-centred cubic (BCC). It can be seen that as well as finding the crystal structures, the GA was
able to correctly align and anti-align the spins for the FM/AFM structures respectively. This illustrates
the power of our new magnetic GA to perform global optimisation in both spin and crystal structure
spaces simultaneously.

Figure 11. Lowest enthalpy structures for the AFM (left) and FM (top right and bottom right)
parameterisations of the LJ + S model. For the FM parameterisation, both the six-atom unit cell
(top right) and primitive cell (bottom right) are shown. For the AFM parameterisation, a 2 × 2 × 1
supercell is shown to emphasise the BCC structure.

3.2. Heusler/Ge Interface

For the CFAS/Ge interface structure search, the calculation was performed on the 12-atom unit
cell containing four germanium, four cobalt, two iron, one aluminium and one silicon atom. The GA
was allowed to fully optimise the atomic positions. The lattice parameters were constrained to that of
the full Heusler alloy, a = b = c = 5.676 Å, since there is very little lattice mismatch to the germanium
lattice and it is not expected that this would change much over such a short interface region. The GA
was run with a population size of 20 members per generation for a maximum of 100 generations.

An ionic position mutation amplitude of 3 Å was used with a rate of 0.03 mutations per atom. This
was chosen to allow on average one atom every two members to mutate, but significantly enough to
hop lattice sites. A slightly higher ionic permutation rate of 0.04 was chosen since, for the bulk Heusler,
atomic swaps on the lattice sites can be comparable in energy to the ground state. If a similar crystal
structure is found, it is likely that exploring this kind of disorder would be a good idea. The spin
mutation rate was 0.06 per atom. This was chosen to be higher than the atomic mutation rate because
not all atoms would be expected to magnetise, meaning that some mutations would get negated by
the local optimisation.

Each member was optimised using the BFGS algorithm to a tolerance of 1 meV. The energies were
computed using CASTEP, with a cutoff energy of 650 eV and k-point spacing of 0.04 Å−1. The PBE
functional [22] was used in conjunction with Hubbard U values of 2.1 eV on the d-orbitals of iron and
cobalt, in keeping with previous CASTEP studies of the related Heusler alloys [35].
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3.2.1. Algorithm Performance

Figure 12 shows the range of enthalpies for CFAS/Ge structures found at each generation of
the GA. It can be seen that, on average, the enthalpy of structures in decreases significantly over the
first 10 generations, and remains below that of the random structures searched in generation 0 for
the remainder of the calculation. This implies that the GA successfully explores more favourable
regions of the configuration space. In addition, it can be seen that every generation retains a significant
distribution of structures over a range of about 2.5–3 eV. This suggests that the population is remaining
significantly diverse and not converging to a single low enthalpy solution. Finally, the inset to
Figure 12 shows how the lowest enthalpy value found changes during the calculation. The overall
lowest enthalpy structure of the run was found in generation 72. The calculation proceeded for a
further 28 generations without finding a lower enthalpy structure and hence this can be taken as a
reasonable candidate for the global lowest enthalpy structure.

Figure 13 shows the distribution of magnetic structures found, plotted against their energy.
Two clusters of structures are found in the energy range which would be thermally accessible during
growth. The first of these are ferromagnetic, with a total spin of about 8 h̄/2 and a modulus spin of
about 9.9 h̄/2. The second cluster is antiferromagnetic, with a total spin of about 0 h̄/2 and a modulus
spin of about 7.5 h̄/2.
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Figure 12. Total enthalpy per 12-atom cell of CFAS/Ge structure relative to the overall lowest enthalpy
structure found. The lines represent the highest, lowest and mean enthalpies, along with the overall
best structure found so far for each generation. The inset shows the best structures found in the
0–0.05 eV range.
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Figure 13. Total spin of the Co2FeAl0.5Si0.5 (CFAS)/Ge GA structures, plotted against enthalpy of the
12 atom cell, relative to the overall lowest enthalpy structure found. Thermally accessible energies are
marked for 575 K (blue dots) and 300 K (red dashes). The color of the points represents the generation
in which the structure was found.

Figure 14 shows these regions in more detail. It can be seen that each cluster contains a number of
structures. These are atomic swaps of the lowest enthalpy structure in each magnetic state. Candidate
structures are labelled A1–A3 for the AFM structures and F1–F4 for the FM structures.
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Figure 14. Clustering of CFAS/Ge structures around the AFM (left) and FM (right) configurations of
the interface phase. In each case, a number of distinct structures have been identified (A1–3, F1–4).
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3.2.2. Resultant Structures

The lowest enthalpy structure F1, shown in Figure 15 turns out to be a half Heusler alloy, where
the X1 site contains cobalt, the X2 site contains a vacancy, the Y site contains the iron, silicon and
aluminium, and the Z site contains germanium. The F2 structure has the same crystal structure
as F1 but with a slightly different spin structure. The F3 and F4 structures have the same crystal
structure except one germanium atom is swapped with the silicon atom from the Y site. The results
are summarised in Table 2. We also performed a Hirshfeld charge and spin analysis, which showed
that in each of these structures the spin is localised on the iron and cobalt, with a spin of around 3 h̄/2
on the iron atoms and 0.5 h̄/2 on the cobalt atoms.

Table 2. Table showing the total enthalpies and spins of the best structures, together with the lattice
permutations in relation to F1.

Structure Enthalpy (eV) Total Spin (h̄/2) Total |Spin|(h̄/2) Disorder

F1 0.0 7.94 9.91 None
F2 0.01 7.89 9.89 None
F3 0.03 7.84 9.92 Ge ↔ Si
F4 0.04 7.89 9.93 Ge ↔ Si
A1 0.13 0.13 7.50 2Ge ↔ Si,Fe
A2 0.14 0.10 7.45 Ge ↔ Fe
A3 0.15 0.00 7.62 None

Figure 15. The 2 × 2 × 2 unit cells of the lowest enthalpy structure found by the GA, showing the
positions of the cobalt (pink), aluminium (grey), germanium (turquoise), silicon (gold) and iron (orange)
atoms.

Unlike the full CFAS structure, none of these structures are half-metallic, with a significant number
of states around the Fermi energy. It does not appear that the atomic disorder separating F1–4 has a
significant effect on the electronic structure of the structures. Figure 16 shows the density of states for
bulk CFAS, along with the lowest enthalpy FM and AFM structures found by the GA. It can be seen
that, unlike the bulk CFAS structure, these structures are not half metallic, as there is no band gap in
the minority spin channel. This provides fundamental insight into how this interface structure might
degrade device performance.
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Figure 16. Density of states (DoS) for bulk CFAS (left) and two candidate half-Heuslers: F1 (middle)
and A1 (right). The red and blue lines show the DoS for the majority and minority spins respectively
relative to the Fermi energy. These are characteristic of the FM and AFM structures discussed in this
paper. It can be seen that, unlike bulk CFAS, neither of the half-Heusler structures have a band gap in
the minority spin channel.

This illustrates the power of our new magnetic GA in an ab initio context, to fully optimise spin and
structure simultaneously, even in the absence of any experimental information on a candidate structure.

4. Conclusions

We have presented an enhanced GA for the structure prediction of magnetic materials, such that
the magnetic and crystal structure may be predicted simultaneously. We have introduced new
operations for atomic spin such as crossover, mutation and permutation operations. In addition,
the idea of structural fingerprinting using the crystallographic structure factor was extended, based
on ideas from magnetic neutron scattering theory, and it was demonstrated that the new fingerprint
could identify both similar and distinct crystal and magnetic structures.

To test the magnetic GA, we introduced a novel pair potential VLJ+S which included magnetic-like
effects. While this potential does not accurately model any particular real-life material, it provided
a computationally efficient way of exploring magnetic materials without the cost of fully quantum
calculations. Two parameterisations were given for this potential. The first was parameterised by
DFT simulations of Fe dimers in both aligned and anti-aligned configurations. Since the Fe dimers
preferred to be aligned, it was expected that this parameterisation would yield a FM structure. This was
observed as the lowest energy structure found by the GA was FM FCC, and there was a clear trend in
the energies of all the structures searched towards FM structures. The second parameterisation was
the same as the first, except for a reversed sign on the exchange-like interaction. This was expected to
result in AFM structures since pairs of aligned spins would raise the energy of the system. Indeed,
the lowest energy structure discovered by the GA was an AFM BCC structure. In addition, there was a
clear trend amongst the other structures towards AFM alignment.

Finally, as an example of studying novel magnetic structures of significant experimental
interest, the interface between the Heusler alloy CFAS and n-doped germanium was investigated.
Experimentally, the two materials showed significant mixing and, when annealed, a new phase formed
at the interface as shown by EDS measurements. The structure of this phase was investigated with the
new magnetic GA, and a half-Heusler structure was predicted.

To conclude, we have presented a new GA for structure prediction capable of optimising both
magnetic and crystal structures simultaneously.
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The following abbreviations are used in this manuscript:

CFAS Co2FeAlSi (cobalt iron aluminium silicide; a half-metallic Heusler alloy)
DFT Density Functional Theory
GA Genetic Algorithm
LJ Lennard-Jones
LJ+S Lennard-Jones with spin
EDS Energy dispersive X-ray spectroscopy
DoS Density of States
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