150 research outputs found

    Global and Local Conformation of Human IgG Antibody Variants Rationalizes Loss of Thermodynamic Stability.

    Get PDF
    Immunoglobulin G (IgG) monoclonal antibodies (mAbs) are a major class of medicines, with high specificity and affinity towards targets spanning many disease areas. The antibody Fc (fragment crystallizable) region is a vital component of existing antibody therapeutics, as well as many next generation biologic medicines. Thermodynamic stability is a critical property for the development of stable and effective therapeutic proteins. Herein, a combination of ion-mobility mass spectrometry (IM-MS) and hydrogen/deuterium exchange mass spectrometry (HDX-MS) approaches have been used to inform on the global and local conformation and dynamics of engineered IgG Fc variants with reduced thermodynamic stability. The changes in conformation and dynamics have been correlated with their thermodynamic stability to better understand the destabilising effect of functional IgG Fc mutations and to inform engineering of future therapeutic proteins.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/anie.20150722

    Elucidation of critical pH-dependent structural changes in Botulinum Neurotoxin E

    Get PDF
    Botulinum Neurotoxins (BoNT) are the most potent toxins currently known. However, they also have therapeutic applications for an increasing number of motor related conditions due to their specificity, and low diffusion into the system. Although the start- and end- points for the BoNT mechanism of action are well-studied, a critical step remains poorly understood. It is theorised that BoNTs undergo a pH-triggered conformational shift, activating the neurotoxin by priming it to form a transmembrane (TM) channel. To test this hypothesis, we combined molecular dynamic (MD) simulations and small-angle x-ray scattering (SAXS), revealing a new conformation of BoNT/E. This conformation was exclusively observed in simulations below pH 5.5, as determined by principal component analysis (PCA), and its theoretical SAXS profile matched an experimental SAXS profile obtained at pH 4. Additionally, a localised secondary structural change was observed in MD simulations below pH 5.5, in a region previously identified as instrumental for membrane insertion for BoNT/A. These changes were found at a critical pH value for BoNTs in vivo, and may be relevant for their therapeutic use

    Investigating the structural compaction of biomolecules upon transition to the gas-phase using ESI-TWIMS-MS

    Get PDF
    Collision cross-section (CCS) measurements obtained from ion mobility spectrometry-mass spectrometry (IMS-MS) analyses often provide useful information concerning a protein’s size and shape and can be complemented by modeling procedures. However, there have been some concerns about the extent to which certain proteins maintain a native-like conformation during the gas-phase analysis, especially proteins with dynamic or extended regions. Here we have measured the CCSs of a range of biomolecules including non-globular proteins and RNAs of different sequence, size, and stability. Using traveling wave IMS-MS, we show that for the proteins studied, the measured CCS deviates significantly from predicted CCS values based upon currently available structures. The results presented indicate that these proteins collapse to different extents varying on their elongated structures upon transition into the gas-phase. Comparing two RNAs of similar mass but different solution structures, we show that these biomolecules may also be susceptible to gas-phase compaction. Together, the results suggest that caution is needed when predicting structural models based on CCS data for RNAs as well as proteins with non-globular folds

    Fibrinolysis in a lipid environment: modulation through release of free fatty acids

    Get PDF
    Background: Thrombolysis is conventionally regarded as dissolution of the fibrin matrix of thrombi by plasmin, but the structure of clots in vivo includes additional constituents (proteins, phospholipids) that modulate their solubilization. Objective: We examined the presence of free fatty acids in thrombi and their effects on distinct stages of fibrinolysis (plasminogen activation, plasmin activity). Methods and Results: Using the fluorescent probe acrylodated intestinal fatty acid-binding protein, variable quantities (up to millimolar concentrations) of free fatty acids were demonstrated in surgically removed human thrombi. Oleic acid at relevant concentrations reversibly inhibits more than 90% of the amidolytic activity of plasmin on a synthetic substrate (Spectrozyme PL), but only partially inhibits its fibrinolytic activity measured using turbidimetry. Chromogenic assays detecting the generated plasmin activity show that plasminogen activation by tissue-type plasminogen activator (t-PA) is completely blocked by oleic acid in the fluid phase, but is accelerated on a fibrin matrix. A recombinant derivative of t-PA (reteplase) develops higher fibrin specificity in the presence of oleic acid, because both the inhibition of plasminogen activation in free solution and its enhancement on fibrin template are stronger than with wild-type t-PA. Conclusion: Through the stimulation of plasminogen activation on a fibrin template and the inhibition of plasminogen activators and plasmin in the fluid phase, free fatty acids confine the action of fibrinolytic proteases to the site of clotting, where they partially oppose the thrombolytic barrier function of phospholipids

    Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity

    Get PDF
    Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana-exposed to more than a decade of regular ivermectin treatment-have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread.Pooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR.This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT) whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations

    Structural and dynamic insights into the energetics of activation loop rearrangement in FGFR1 kinase.

    Get PDF
    Protein tyrosine kinases differ widely in their propensity to undergo rearrangements of the N-terminal Asp-Phe-Gly (DFG) motif of the activation loop, with some, including FGFR1 kinase, appearing refractory to this so-called 'DFG flip'. Recent inhibitor-bound structures have unexpectedly revealed FGFR1 for the first time in a 'DFG-out' state. Here we use conformationally selective inhibitors as chemical probes for interrogation of the structural and dynamic features that appear to govern the DFG flip in FGFR1. Our detailed structural and biophysical insights identify contributions from altered dynamics in distal elements, including the αH helix, towards the outstanding stability of the DFG-out complex with the inhibitor ponatinib. We conclude that the αC-ÎČ4 loop and 'molecular brake' regions together impose a high energy barrier for this conformational rearrangement, and that this may have significance for maintaining autoinhibition in the non-phosphorylated basal state of FGFR1.This work was funded as part of the AstraZeneca Internal Postdoctoral program. All authors with the exception of G.S.T. are employees (and stockholders) of AstraZeneca UK Ltd or MedImmune LLC, or were at the time that this study was conducted.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/ncomms887

    Shifting livelihood strategies in northern Nigeria - extensified production and livelihood diversification amongst Fulani pastoralists

    Get PDF
    Abstract This paper presents an in-depth investigation of the livelihood strategies of Fulani pastoralists in north central Nigeria. Results show a diversified crop-livestock system aimed at spreading risk and reducing cattle offtake, adapted to natural resource competition and insecurity by extensification, with further diversification into off-farm activities to spread risk, increase livelihood security and capture opportunities. However, significant costs were associated with extensification, and integration of crop and livestock enterprises was limited. Mean total income per capita in the study area was 554or554 or 1.52/person/day with 42% of households earning less than 1.25/person/day. Income levels were positively correlated with income diversity and price received per animal sold, rather than herd size. The outcomes of this livelihood strategy were favourable across the whole community, but when individual households are considered, there was evidence of moderate economic inequality in total income, cash income and herd size (Gini coefficient 0.32, 0.35 and 0.43 respectively). The poorest households were quite vulnerable, with low assets, income and income diversity. Implications for sustainability are discussed given the likelihood that the negative trends of reduced access to natural resources and insecurity will continue
    • 

    corecore