22 research outputs found

    The effects of symbiotic state on heterotrophic feeding in the temperate anemone Anthopleura elegantissima

    Get PDF
    The temperate sea anemone, Anthopleura elegantissima is facultatively symbiotic with at least two distinct algae: zooxanthellae (Symbiodinium muscatinei) and zoochlorellae (Elliptochloris marina). Symbiotic A. elegantissima potentially receive excess photosynthate from their algal partners, which supplements heterotrophic feeding. But asymbiotic individuals must rely solely on heterotrophic food sources. We predicted that asymbiotic A. elegantissima, due to their lack of algal symbionts, would have a more effective heterotrophic feeding strategy. Symbiotic and asymbiotic A. elegantissima were collected from the field and heterotrophic feeding features were measured (i.e., anemone morphology, tentacle adhesive force, nematocyte sensitivity, cnida size, cnida density, ingestion time, digestion time and absorption efficiency). The anemones were then exposed to natural sunlight or shaded conditions for three weeks and the feeding features were again compared. Few aspects of heterotrophic feeding in A. elegantissima were affected by symbiotic state. Asymbiotic anemones had the largest nematocysts immediately after collection, but were not more efficient predators. We found the greatest nematocyte sensitivity in anemones hosting zooxanthellae, suggesting a greater nutritional need for anemones in this symbiotic state. Though sunlight appeared to increase digestion rate in all anemones, irradiance also had negative effects. Anemones exposed to sunlight had lower cnida densities and smaller spirocysts. Sunlight also appeared to reduce cnidocyte function in asymbiotic individuals. Our results show that symbiotic state has little effect on heterotrophic feeding in A. elegantissima, suggesting that the symbiotic algae may contribute little to the host anemones\u27 daily nutritional requirement and that nutrition in A. elegantissima may be obtained primarily through heterotrophy

    A phylum-wide survey reveals multiple independent gains of head regeneration in nemertea

    Get PDF
    Animals vary widely in their ability to regenerate, suggesting that regenerative ability has a rich evolutionary history. However, our understanding of this history remains limited because regenerative ability has only been evaluated in a tiny fraction of species. Available comparative regeneration studies have identified losses of regenerative ability, yet clear documentation of gains is lacking. We assessed ability to regenerate heads and tails either through our own experiments or from literature reports for 35 species of Nemertea spanning the diversity of the phylum, including representatives of 10 families and all three orders. We generated a phylogenetic framework using sequence data to reconstruct the evolutionary history of head and tail regenerative ability across the phylum and found that all evaluated species can remake a posterior end but surprisingly few could regenerate a complete head. Our analysis reconstructs a nemertean ancestor unable to regenerate a head and indicates independent gains of head regenerative ability in at least four separate lineages, with one of these gains taking place as recently as the last 10-15 Myr. Our study highlights nemerteans as a valuable group for studying evolution of regeneration and identifying mechanisms associated with repeated gains of regenerative ability.Fil: Zattara, Eduardo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. National Museum of Natural History; Estados Unidos. University of Maryland; Estados UnidosFil: Fernández Álvarez, Fernando Ángel. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias del Mar; EspañaFil: Hiebert, Terra. University of Oregon; Estados UnidosFil: Bely, Alexandra. University of Maryland; Estados UnidosFil: Norenburg, Jon L.. National Museum of Natural History; Estados Unido

    Sampling multiple life stages significantly increases estimates of marine biodiversity

    Get PDF
    Biodiversity assessments are critical for setting conservation priorities, understanding ecosystem function and establishing a baseline to monitor change. Surveys of marine biodiversity that rely almost entirely on sampling adult organisms underestimate diversity because they tend to be limited to habitat types and individuals that can be easily surveyed. Many marine animals have planktonic larvae that can be sampled from the water column at shallow depths. This life stage often is overlooked in surveys but can be used to relatively rapidly document diversity, especially for the many species that are rare or live cryptically as adults. Using DNA barcode data from samples of nemertean worms collected in three biogeographical regions—Northeastern Pacific, the Caribbean Sea and Eastern Tropical Pacific—we found that most species were collected as either benthic adults or planktonic larvae but seldom in both stages. Randomization tests show that this deficit of operational taxonomic units collected as both adults and larvae is extremely unlikely if larvae and adults were drawn from the same pool of species. This effect persists even in well-studied faunas. These results suggest that sampling planktonic larvae offers access to a different subset of species and thus significantly increases estimates of biodiversity compared to sampling adults alone. Spanish abstract is available in the electronic supplementary material.Fil: Maslakova, Svetlana A.. University of Oregon; Estados UnidosFil: Ellison, Christina I.. University of Oregon; Estados UnidosFil: Hiebert, Terra C.. University of Oregon; Estados UnidosFil: Conable, Frances. University of Oregon; Estados UnidosFil: Heapy, Maureen C.. University of Oregon; Estados UnidosFil: Venera Pontón, Dagoberto E.. Smithsonian Tropical Research Institute; PanamáFil: Norenburg, Jon L.. National Museum Of Natural History. Departamento de Zoología. Area de Invertebrados; Estados UnidosFil: Schwartz, Megan L.. University of Washington; Estados UnidosFil: Boyle, Michael J.. Smithsonian Tropical Research Institute; PanamáFil: Driskell, Amy C.. National Museum Of Natural History. Departamento de Zoología. Area de Invertebrados; Estados UnidosFil: Macdonald, Kenneth S.. National Museum Of Natural History. Departamento de Zoología. Area de Invertebrados; Estados UnidosFil: Zattara, Eduardo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Collin, Rachel. Smithsonian Tropical Research Institute; Panam

    Tresus capax

    Get PDF

    Littorina plena

    Get PDF

    Abarenicola pacifica

    Get PDF
    This individual species account is the most recent version of this book chapter. Earlier iterations are contained in the first, second and third full editions of this work which are housed in Scholars' Bank. Future editions of this work will be hosted by the Oregon Institute of Marine Biology. Contact [email protected] for additional information

    Littorina scutulata

    Get PDF

    New Nemertean Diversity Discovered in the Northeast Pacific, Using Surveys of Both Planktonic Larvae and Benthic Adults

    Get PDF
    This study doubles the known diversity of nemertean species in one region along the northeast Pacific coast by utilizing the often over-looked larval life-history stage. Prior to this work, the nemertean fauna in this region was believed to be well described; however, previous assessments were based on adult life-history stages only and significantly underestimated the real diversity. With this dissertation, we update what is known about nemertean diversity and expand upon this “life-history” approach to describe new species, identify and describe larval forms, and speculate on the phylogenetic relevance of nemertean larvae. A considerable amount of new diversity takes the form of cryptic species complexes, where existing descriptions include characteristics of several species. Micrura alaskensis, a common intertidal nemertean and an emerging model system for developmental studies, existed as a species complex consisting of five species. In this dissertation we designate a new genus, re-describe M. alaskensis, and describe four new species in this complex. In doing so we make accurate identification possible for future comparative research. The complete development of few nemertean species was known before this project began, thus few species could be identified as larvae. We have identified over 30 nemertean larvae using both embryological and DNA barcoding approaches in this work. Intriguingly, many wild-caught larvae could not be matched to species previously reported from this region and instead contribute to previously unknown diversity. This new diversity includes species previously reported only from distant geographic regions as well as species new to science. The first record of a hubrechtid on the west coast of North America and the identification of two new species in the currently monotypic genus Riserius were revealed in larval assessments. Aside from increasing known species-level diversity, we revealed novel larval types. Barcoding larvae allowed us to place larval morphotypes into a phylogenetic context and identify potentially useful larval synapomorphies for nemertean phylogenies. Our results emphasize the importance of a life-history approach to biodiversity assessments for all species with biphasic life-cycles. This dissertation includes published and unpublished co-authored material
    corecore