13 research outputs found

    Resonant Spin-Flavor Conversion of Supernova Neutrinos: Dependence on Electron Mole Fraction

    Full text link
    Detailed dependence of resonant spin-flavor (RSF) conversion of supernova neutrinos on electron mole fraction Ye is investigated. Supernova explosion forms a hot-bubble and neutrino-driven wind region of which electron mole fraction exceeds 0.5 in several seconds after the core collapse. When a higher resonance of the RSF conversion is located in the innermost region, flavor change of the neutrinos strongly depends on the sign of 1-2Ye. At an adiabatic high RSF resonance the flavor conversion of bar{nu}_e -> nu_{mu,tau} occurs in Ye 0.5 and inverted mass hierarchy. In other cases of Ye values and mass hierarchies, the conversion of nu_e -> bar{nu}_{mu,tau} occurs. The final bar{nu}_e spectrum is evaluated in the cases of Ye 0.5 taking account of the RSF conversion. Based on the obtained result, time variation of the event number ratios of low bar{nu}_e energy to high bar{nu}_e energy is discussed. In normal mass hierarchy, an enhancement of the event ratio should be seen in the period when the electron fraction in the innermost region exceeds 0.5. In inverted mass hierarchy, on the other hand, a dip of the event ratio should be observed. Therefore, the time variation of the event number ratio is useful to investigate the effect of the RSF conversion.Comment: 16 pages, 33 figures, accepted for publication in Physical Review

    Supernova Neutrino Nucleosynthesis of Light Elements with Neutrino Oscillations

    Get PDF
    Light element synthesis in supernovae through neutrino-nucleus interactions, i.e., the ν-process, is affected by neutrino oscillations in the supernova environment. There is a resonance of 13-mixing in the O/C layer, which increases the rates of charged-current ν-process reactions in the outer He-rich layer. The yields of 7Li and 11B increase by about a factor of 1.9 and 1.3, respectively, for a normal mass hierarchy and an adiabatic 13-mixing resonance, compared to those without neutrino oscillations. In the case of an inverted mass hierarchy and a non-adiabatic 13-mixing resonance, the increase in the 7Li and 11B yields is much smaller. Observations of the 7Li/11B ratio in stars showing signs of supernova enrichment could thus provide a unique test of neutrino oscillations and constrain their parameters and the mass hierarchy

    Supernova Neutrino Nucleosynthesis of Light Elements with Neutrino Oscillations

    Full text link
    Light element synthesis in supernovae through neutrino-nucleus interactions, i.e., the nu-process, is affected by neutrino oscillations in the supernova environment. There is a resonance of 13-mixing in the O/C layer, which increases the rates of charged-current nu-process reactions in the outer He-rich layer. The yields of 7Li and 11B increase by about a factor of 1.9 and 1.3, respectively, for a normal mass hierarchy and an adiabatic 13-mixing resonance, compared to those without neutrino oscillations. In the case of an inverted mass hierarchy and a non-adiabatic 13-mixing resonance, the increase in the 7Li and 11B yields is much smaller. Observations of the 7Li/11B ratio in stars showing signs of supernova enrichment could thus provide a unique test of neutrino oscillations and constrain their parameters and the mass hierarchy.Comment: 5 pages, 3 figures, accepted for publication in Physical Review Letter

    Neutrino-Nucleus Reaction Cross Sections for Light Element Systhesis in Supernova Explosions

    Get PDF
    The neutrino-nucleus reaction cross sections of 4He and 12C are evaluated using new shell model Hamiltoni-ans. Branching ratios of various decay channels are calculated to evaluate the yields of Li, Be, and B producedthrough the ν -process in supernova explosions. The new cross sections enhance the yields of7Li and11B pro-duced during the supernova explosion of a 16.2 M⊙star model compared to the case using the conventionalcross sections by about 10%. On the other hand, the yield of10B decreases by a factor of two. The yieldsof6Li,9Be, and the radioactive nucleus10 Be are found at a level of ∼ 10−11M⊙. The temperature of νµ,τ-and ¯νµ,τ-neutrinos inferred from the supernova contribution of11B in Galactic chemical evolution models isconstrained to the 4.3 − 6.5 MeV range. The increase in the7Li and11B yields due to neutrino oscillations isdemonstrated with the new cross section

    Neutrino-Nucleus Reaction Cross Sections for Light Element Synthesis in Supernova Explosions

    Full text link
    The neutrino-nucleus reaction cross sections of 4He and 12C are evaluated using new shell model Hamiltonians. Branching ratios of various decay channels are calculated to evaluate the yields of Li, Be, and B produced through the nu-process in supernova explosions. The new cross sections enhance the yields of 7Li and 11B produced during the supernova explosion of a 16.2 M_odot star model compared to the case using the conventional cross sections by about 10%. On the other hand, the yield of 10B decreases by a factor of two. The yields of 6Li, 9Be, and the radioactive nucleus 10Be are found at a level of 10^{-11} M_odot. The temperature of nu_{mu,tau}- and bar{nu}_{mu,tau}-neutrinos inferred from the supernova contribution of 11B in Galactic chemical evolution models is constrained to the 4.3-6.5 MeV range. The increase in the 7Li and 11B yields due to neutrino oscillations is demonstrated with the new cross sections.Comment: 19 pages, 30 figures, accepted for publication in Astrophysical Journal. Typos are correcte

    Enhancement of CP Violating terms for Neutrino Oscillation in Earth Matter

    Get PDF
    We investigate the νeνμ\nu_e \to \nu_{\mu} oscillation in the framework of three generations when neutrinos pass through the earth. The oscillation probability is represented by the form, P(νeνμ)=Acosδ+Bsinδ+CP(\nu_e \to \nu_\mu)=A\cos \delta+B\sin \delta+C in arbitrary matter profile by using the leptonic CP phase δ\delta. We compare our approximate formula in the previous paper with the formula which includes second order terms of α=Δm212/Δm312\alpha=\Delta m_{21}^2/\Delta m_{31}^2 and s13=sinθ13s_{13}=\sin \theta_{13}. Non-perturbative effects of α\alpha and s13s_{13} can be taken into account in our formula and the precision of the formula is rather improved around the MSW resonance region. Furthermore, we compare the earth matter effect of AA and BB with that of CC studied by other authors. We show that the magnitude of AA and BB can reach a few ten % of CC around the main three peaks of CC in the region E>1E>1 GeV by numerical calculation. We give the qualitative understanding of this result by using our approximate formula. The mantle-core effect, which is different from the usual MSW effect, appears not only in CC but also in AA and BB, although the effect is weakened.Comment: 16 pages, 5 figure

    Proposal of a Simple Method to Estimate Neutrino Oscillation Probability and CP Violation in Matter

    Get PDF
    We study neutrino oscillation within the framework of three generations in matter. We propose a simple method to approximate the coefficients A, B and C which do not depend on the CP phase \delta in the oscillation probability P(\nu_e \to \nu_{\mu})=A\cos \delta + B\sin \delta +C. An advantage of our method is that an approximate formula of the coefficients A, B and C in arbitrary matter {\it without the usual first order perturbative calculations} of the small parameter \Delta m_{21}^2/\Delta m_{31}^2 or \sin \theta_{13} can be derived. Furthermore we show that all the approximate formulas for low, intermediate and high energy regions given by other authors in constant matter can be easily derived from our formula. It means that our formula is applicable over a wide energy region.Comment: 15 pages, 9 figures, accepted version in PL

    Neutrino Oscillation Effects on Supernova Light Element Synthesis

    Get PDF
    Neutrino oscillations affect light element synthesis through the neutrino-process in supernova explosions. The 7Li and 11B yields produced in a supernova explosion of a 16.2 solar-mass star model increase by factors of 1.9 and 1.3 in the case of large mixing angle solution with normal mass hierarchy and sin^{2}2theta_{13} > 0.002 compared with those without the oscillations. In the case of inverted mass hierarchy or nonadiabatic 13-mixing resonance, the increment of their yields is much smaller. Neutrino oscillations raise the reaction rates of charged-current neutrino-process reactions in the region outside oxygen-rich layers. The number ratio of 7Li/11B could be a tracer of normal mass hierarchy and relatively large theta_{13}, still satisfying sin^{2}2theta_{13} < 0.1, through future precise observations in stars having strong supernova component.Comment: 35 pages, 17 figures, accepted for publication in Astrophysical Journa

    Overall Feature of CP dependence for Neutrino Oscillation Probability in Arbitrary Matter Profile

    Get PDF
    We study the CP dependence of neutrino oscillation probability for all channels in arbitrary matter profile within three generations. We show that an oscillation probability for \nu_e \to \nu_\mu can be written in the form P(\nu_e \to \nu_\mu) =A_{e\mu} cos \delta + B_{e\mu} sin \delta + C_{e\mu} without any approximation using the CP phase \delta. This result holds not only in constant matter but also in arbitrary matter. Another probability for \nu_\mu \to \nu_\tau can be written in the form P(\nu_\mu \to \nu_\tau)= A_{\mu\tau} cos \delta + B_{\mu\tau} sin \delta + C_{\mu\tau} + D_{\mu\tau} cos 2\delta + E_{\mu\tau} sin 2\delta. The term which is proportional to sin 2\delta disappear, namely E_{\mu\tau}=0, in symmetric matter. It means that the probability reduces to the same form as in constant matter. As for other channels, probabilities in arbitrary matter are at most the quadratic polynomials of sin \delta and cos \delta as in the above two channels. In symmetric matter, the oscillation probability for each channel reduces to the same form with respect to \delta as that in constant matter.Comment: 11 pages, no figures, LaTeX2e, a few misprints have been correcte

    Exact Formulas and Simple CP dependence of Neutrino Oscillation Probabilities in Matter with Constant Density

    Full text link
    We investigate neutrino oscillations in constant matter within the context of the standard three neutrino scenario. We derive an exact and simple formula for the oscillation probability applicable to all channels. In the standard parametrization, the probability for νe\nu_e \to νμ\nu_{\mu} transition can be written in the form P(νeνμ)=Aeμcosδ+Beμsinδ+CeμP(\nu_e \to \nu_{\mu})=A_{e\mu}\cos\delta+B_{e\mu}\sin\delta+C_{e\mu} without any approximation using CP phase δ\delta. For νμ\nu_{\mu} \to ντ\nu_{\tau} transition, the linear term of cos2δ\cos 2\delta is added and the probability can be written in the form P(νμντ)=Aμτcosδ+Bμτsinδ+Cμτ+Dμτcos2δP(\nu_{\mu} \to \nu_{\tau})=A_{\mu\tau}\cos\delta+B_{\mu\tau} \sin\delta+C_{\mu\tau}+D_{\mu\tau}\cos 2\delta. We give the CP dependences of the probability for other channels. We show that the probability for each channel in matter has the same form with respect to δ\delta as in vacuum. It means that matter effects just modify the coefficients AA, BB, CC and DD. We also give the exact expression of the coefficients for each channel. Furthermore, we show that our results with respect to CP dependences are reproduced from the effective mixing angles and the effective CP phase calculated by Zaglauer and Schwarzer. Through the calculation, a new identity is obtained by dividing the Naumov-Harrison-Scott identity by the Toshev identity.Comment: 12 pages, RevTeX4 style, changed title, minor correction
    corecore