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Abstract

We study neutrino oscillation within éhframework of three generations in matter. We propose a simple method to
approximate the coefficient$, B andC which do not depend on the CP phdsia the oscillation probability? (v, — v,) =
A coss + Bsind + C. An advantage of our method is that an approximate formula of the coefficierlBsand C in arbitrary
matterwithout the usual first order perturbative calculations of the small parameteﬁmgl/ Amgl or sind13 can be derived.
Furthermore, we show that all the approximate formulas for low, intermediate and high energy regions given by other authors
in constant matter can be easily derived from our formula. It means that our formula is applicable over a wide energy region.

0 2004 Elsevier B.VOpen access under CC BY license.

1. Introduction

Recent experiments clarified that the solar neu-
trino deficit and the atmospheric neutrino anomaly
are strong evidences for the neutrino oscillations
with three generations. The solar neutrino deficit is
explained byv, — v, oscillation [1] and the at-
mospheric neutrino anomaly is explainedipy— v,
oscillation[2]. In the recent SN@3] and KamLAND
experimentg4], the solar neutrino problem has been
solved by the large mixing angle (LMA) MSW solu-
tion [5]. Furthermore, the upper bound@g is given
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by the CHOOZ experimer[6]. Thus, there are two
small parameters

sinf13 < 0.16.

)

The remaining problems are the determination of sign
Am%l, the measurement of the 1-3 mixing anéle
and the CP phasé [7]. In the limit of vanishing
mixing anglef3 or vanishing mass squared difference
Am3,, the CP violating effects in the oscillation
probability disappear. Therefore, the magnitude of
the two small parameters and sir9;3 controls the
magnitude of the CP violation. The LMA MSW
solution in the solar neutrino problem has opened the
possibility of the observation of CP violation in the
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lepton sector. For this purpose, many long baseline reduction formula which is valid without averaging
neutrino experiments are planni@j. Am%l.

The matter effect received from the earth is impor- In a series of previous papers we have calculated
tant in the long baseline neutrino experiments, becausethe oscillation probability? (v, — v,). In the pa-
fake CP violation is induced due to matter effect. The pers[28] we have shown that the CP phasdepen-
Preliminary Reference Earth Model (PREM) is well dence ofP (v, — v,,) in constant matter is given in the
known as the model of the earth density and is usually form
used in analysis of long baseline experiments. How-
ever, it has recently been pointed out in geophysical P (v,
analysis of the matter density profile from J-PARC to and have derived an exact but simple expression for
Beijing [9] that the deviation from the PREM is rather the coefficientsA, B and C. In the next papef29]
large. In this Letter, we derive an approximate formula we have presented a simple and general formula which
of neutrino oscillation prbability without assuming  does not depend on the matter profile. As a result, we
any specific earth density models. have concluded thdqg. (3)is valid even in arbitrary

In constant matter, various approximate formulas matter. However, in the case of non-constant matter
have been proposed in low enerf0-12] in in- density, there exist no closed-form expressions for the
termediate energy13-15] and in high energy re-  coefficientsd, B andC.
gions[16-18] In the case that the matter density is In this Letter we propose a simple method to derive
not constant, approximate formulas have been also de-the approximate formula of the coefficients, B
rived in[19-25]using perturbative calculations to ana- and C taking account of the small parametersind
lyze the terrestrial matter effect. However, the question sinf13. The coefficientsA and B are linear ine and
of how to separate the genuine CP violation due to the sing13. These coefficients represent the genuine three
leptonic CP phase from the fake CP violation induced flavor effect. Therefore, it has been considered that
by matter effect has not been investigated sufficiently the first order perturbative calculationswbr 613 are
in arbitrary matter. needed for the derivation of and B. However, it is

The next step is to analyze the CP violating effects possible to calculata, B andC without the usual first
in more detail in the case of non-constant matter order perturbative calculations of small parametes
density. In order to obtain a hint for this problem, or sind;3 in our method. As we shall see later in
we will briefly review the approach applied in the Section 2the reduction formula in arbitrary matter is
solar neutrino problem. It is difficult to derive the derived as
exact solutions for solar neutrino problem in three e oh
generations except for some special matter profile. Ax ZRG[S;LeSre]CZW& (4)

As an approach to derive the neutrino oscillation B:_2|m[sﬁ’;sfe]c23523, (5)
probability, a low energy approximate formula was 5 2 5

proposed ifj26]. By averagingﬁmgl, they derived the e’ e| 523 (6)
formula where Sf, and §”, are the oscillation amplitudes
calculated in the following Hamiltonian, respectively,

2) H' = 012diag0, A2y, A31) 0],
This is a formula tg)reduce the calculation of the sur- + diaga(r), 0, 0), (7)
vival probability P** (v, — v.) in three generations . .
to thapt ofP<2)(ze — 1) in two generations. There- H" = 013diag0, 0, A31) O+ diaga(1), 0,0).  (8)
fore, this formula is called the reduction formigv]. Here A;; is defined byA;; = Am,.zj/ZE, 0;; is the
This reduction formula is useful for the analysis of so- rotational matrix in thej plane and:(¢) is the matter
lar neutrino experiments, but it is not directly applica- potential. Since bottH¢ and H" are Hamiltonians in
ble to long baseline neutrino experiments planned in two generationg:gs. (4)—(6)are formulas in order to
the future, because we cannot averaﬁge%l in long reduce the calculation of the coefficiemts B andC
baseline experiments. Therefore, we need to derive thein three generations to the oscillation amplitudes in

— v,) =Acoss + Bsing + C, 3)

C |8, [ "3+ St

P(?’)(ve — V) = CO§1913 P(Z)(ve — V) + Sin4t913.
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two generations. Furthermore, we show that other The amplitudess andS’ are given by substituting the
approximate formulas known in constant matter can relations(12)and(13)into the following equations:
be easily derived from our formula. This means that

L
our formula is applicable to a wide energy region.
PP gyreg S=Texp{—i/H(t)dz},
0

2. New idea for an approximate formula L
S’ =Texp{—i/H’(t)dz}. (14)
In this section we propose a new idea to derive an o
approximate formula for neutrino oscillation probabil- ) )
ity. At first we review a general framework for the os- 1 Nen we obtain the amplitude fof, — v;, as thex—5
cillation probability in arbitrary matter. Next, we intro- ~ component

duce how to derive an .approximate.formula from this Sup = (023FS’FT02Tg) ) (15)
framework. We also discuss the difference between op
our method and usual methods. In particular, when we choogeande asa andp, the

amplitudes,,. is given by
2.1. Review of general formulation i
9 Spe = S;/LeC23 + S;eszgela. (16)

In this subsection we briefly review that the CP de- From this relation, the probability is calculated as
pendence of the oscillation probabiliB(v. — v,,) is

given in the form as (v, — v,) = A c0s5 + B'sins + P(ve > v,) = Acoss + Bsing + C, 17)
C in arbitrary matter. More detailed calculation has A =2R{S,%S;, |c2as23, (18)
been given in papdR9]. .
The Hamiltonian in matter is given by B = —2Im[S,;, St |czss2s, (19)
2 2
C =[S Ba+ (S| 35 (20)

H = U diag(0, A1, A3 U + diag(a(r), 0,0),  (9)
_ . which is the exact formula in arbitrary matter derived
whereU is the Maki-Nakagawa—Sakata (MNS) ma-  in the previous papd29].

trix [30]. Using the standard parametrization
2.2. Order countingof A, B and C on « and sinf13

U = 023" 013" 1 012, (10)
the Hamiltonian is written as In this subsection we study how the coefficieAts
B andC defined in(18)—(20)depend orx and sird;s.
H = 023 013012diag(0, Az1, A31) 01,071,101, Instead ofA, B andC, we study the dependence of
: S’ ,andS., ona and sirv13 by taking the limit either
diag(a(?), 0, 0), 11 e Te
+ g(a( ) ) (11) f13— 0 ora — 0.
where I' = diag(1, 1, ¢%) is the phase matrix. It At first, taking the limit613 — 0, the Hamiltonian

should be pointed out that the matter potential of the reduces to
Hamiltonian contains only the—e component. The HE— lim B 21
Hamiltonian can be written in the form decomposing - 91'3@0 (1)

the CP phasé and the 2—3 mixing anglé»3 as — 012diag0, Ao1, A31)01T2+ diag(a(z), 0. O)

22)

H = 023FH/FTOT s (12) (

23 Apisi,+a(t) Azisiociz 0O

whereH’ is defined as =\ Aows12c12 Az1c3, o] @
0 0 A3z

H' = 013012diag(0, Az1, A31) 01,01, . L .
5 12713 This Hamiltonian expresses the fact that the third

+diag(a(1). 0. 0). (13) generation is separated from the first and the second
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generations. We simply obtain the amplitude dependence of;, andS;, on« and siry3 is given
by
=0 24 — 0@, S, =0@ing (34)
I = = 0(sinf13).
from the Hamiltonian(23). It means that the order of She (e e 13)
” . is given by We expand botls,, and S;, in terms of two small

parameters and sirv13 as

_ 7 = (0@ + 0@+ 0@+
for the cas#13 # 0. In the same way, taking the limit ) 5 .
As1 — 0, the Hamiltonian reduces to + (O(asinbiz) + O(a”sindig) +--)  (35)
e Z i 2 i .«
H"= lim H' (26) = SM + O(asinf13) + O(a“sinf13) +---, (36)
A0 . S;e = (0(sinf13) + O(sinf b13) + - )
- 013d|azg(0, 0, A31) 013 + diag(a(), 0,0) (27) + (Ofasingy) + O@sing +-)  (37)
Azisizt+a) 0 Aszisizcis N , 5
= 0 0 0 . (28) =87, + O(asinf3) + O(a“sinf13) +---, (38)
Asws13c1iz 0 Agacdy
This Hamiltonian expresses the fact that the second
generation is separated from the first and the third Su. = I|m SW (39)
generations. We simply obtain the amplitude

!, = 0(sinf13) (25)

wheres’,, ands?, are defined by

sh = I|m S, (40)
S, =0 (29) «0 . .
From (36) and (38) we can approximate the ampli-

from the Hamiltonian(28). It means that the order of  {,des as
S, is given by

She ™ She- (41)
S =0 30
e =010 G g sl (42)

for the casea # 0. Finally, we conclude that the
dependence of the coefficierds B andC on « and
sinf13is given by

The accuracy of this approximation is determined by
the magnitude of the higher order terms ondsigand
«. At present, the upper bound of #ir3 is given by

A=2 Re[Sue 16]623&3 = O(a'sind13), (31) the CHOOZ experiment. In future experiments, when
) the value of913 will become smaller, the accuracy of
B=-2 'm[SueSre]c23523 = O(asind1y), (32) the approximate formula can be better. It is noted that
2 _ . . o X
=S| Byt |s., | 535= 0(a?) + O(sirt613). the simple method introduced in this subsection does
(33) not depend on whether the matter density is constant

or not. We obtain the oscillation probability from the

Since bothA and B vanish in the two flavor limit, .
reduced amplitudes as

eithera — 0 or sind13 — 0, this fact represents the
genuine three flavor effect. The coefficiertsand B P (v, — v,) = Acoss + Bsing + C, (43)
are doubly suppressed by these small parameters

6*
and sind13, In Refs [17,18] this is pointed out for the 4 ~ 2 RSy See]easza, (44)
case of constant matter density. However, these resultsB ~ —2 Im[Sej Sw]czgszg, (45)
(31)—(33)are correct even in aitbary matter profile.
P C= |Sﬁe| 53+ Sk | 553 (46)
2.3. Main result This formula is one of the main results obtained

in this Letter. The advantage of this formula is as
In this subsection, we propose a simple method follows. First, this formula is derived by using only
to approximately calculate the amplitudﬁge and two small parameteks and sirg;3 without assuming a
S.,. From the result of the previous subsection, the specific matter density model. Therefore, this formula
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is applicable to the case of the PREM, ak135f and
so on. Second, the reduction formy2) applied to
the solar neutrino problem is valid only in the case
that the averaging fommgl is possible. However,
our formula is effective even in the case that the
oscillation probability cannot be averaged. Namely, it
is applicable to long baseline experiments. Third, we
derive this formulavithout the first order perturbative
calculations of small parametew or singi3. This is

A. Takamura et al. / Physics Letters B 595 (2004) 414424

If we use the expansion in terms of &if3 to calculate
both amplitudes;,, ands;,, the amplitudes;,, can be
calculated in the zeroth order perturbation. However,
S:, need to be calculated in the first order perturbation.
In the same way, if we use the expansion in terms,of
the amplitudes;, can be calculated in the zeroth order
perturbation, bus,, need to be calculated in the first
order perturbation.

An advantage of our method is that we are able to

the reason why our derivation is easier than usual calculate both the amplitudé§, ands;, inthe zeroth
perturbative methods proposed by other authors. More order perturbation, namely, without the first order

detailed discussion is given in the next subsection.
2.4. Comparison with usual perturbative calculations

In this subsection, we compare our method with

perturbation of the small parameter or sinf13. If we
expandsl’w in terms of sirp13 instead ofx, we do not
need to perform the first order perturbation. Similarly,
if we expands., in terms of« instead of sify3, we

do not need to perform the first order perturbation

usual perturbative methods and describe the advantageg calculateS.,. One of the essential points of our

of our method clearly. From the result of the previous
subsection, the dependence of the coefficientnd
B on« and sird13 is given by

A= 0O(asinfy3), B = O(asinf13). 47

As both « and sim13 are small parameters, there
are two kinds of perturbative methods. One method
is to considera as a small parameter and treag
exactly. Another method is to consider 8in as a
small parameter and treatexactly. The former case
means that we considéf’ as a perturbation fronif ¢

H' = H"+ 0(sinf13). (48)

We need to perform the first order perturbative calcu-
lation to obtainA and B in this perturbative method.
Similarly, the later case means that we consiiéias

a perturbation fronH"

H =H"+0(). (49)

In order to calculatet and B, we need to perform the
first order perturbative calculation. In both cases, we
need to perform the first order perturbative calculation,
because the CP violating effts disappear in the limit
of vanishingax or 613.

Letus interpretthe above usual perturbative method

by using the general formulatiqd8) and (9) as fol-
lows. The expression$ andB are represented by two
kinds of amplitudes;,, andS;,. The dependend@5)
and (30) of the two amplitudes omx and sirp13 is
rewritten as

S} = 0(°sinf13), S, = 0(asind13). (50)

method is that the Hamiltonian to calcula.ﬂée is

different from that to calculats”,. Another point is
that we only have to calculat§/,, and s”, by using
the HamiltonianH¢ and H" in the framework of

two generations, respectively. These ideas make the

calculations of the probability easy.

3. Approximateformulain vacuum or in constant
matter

In this section, we calculate the concrete expres-
sions forA, B andC both in vacuum and in constant
matter by using the new method. Moreover, we com-
pare the value of these coefficients with exact value by
numerical calculation.

3.1. Invacuum

At first, we calculate?ﬁe in vacuum, namely, in the
case ofa(1) =0. S}, is

She = (exp(—iHeL))M (51)
= (Ordiag(L, e 42 e4ab) 0 ) - (52)
= —isinXp2sin Al exp(—i %L) (53)

from the Hamiltoniar(23). Similarly S”, is

Sh = —isin23sin A321L exp(—i %L) (54)
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from the Hamiltonian(28). We obtain the expressions
for A, B andC

A > sin 912Sin Y3Sin Y13

. Aol . Az1L Azl
sin sin cos 55
X > > > (55)
B >~ sin 912sin 923Sin Y13
. Aol . Az1L . AzoL
sin sin sin , 56
ST 2 2 (56)
. . 5 A21L
C = ¢355in? 2015 sin? 21
. . » Az1L
+ 555 Sir? 20 3sin? 321 , (57)

by substituting53) and(54) into (44), (45) and(46).

3.2. In constant matter

Next we calculate the amplitudes in constant mat-

ter, namely in the case af(r) = a. At first, we diago-
nalize the Hamiltoniar§23) in constant matter by the
orthogonal matrix0y, as

H' = 012diag(0, Az1, A31) 04, + diaga,0,0) (58)
. T
= 0, diag(r], 15, A31)(01)) (59)
to calculatesﬁe. Herekf(i =1, 2) is the eigenvalue

given by

1
A= §<A21+a

+ \/(A21COS Dio—a)2+ A%lsinz 2912), (60)

and A{ and 15 correspond to the sign—" and the
opposite sign+’, respectively. The effective mixing
angle sin 2, is calculated as

A2 sin? 29
sin? 260, = 21 - . (61)
(A21€08D12 —a)? + A213|n2 2012
From(60) and(61)we obtain the relation
Ay _sinp
Az1 siny,
4 \2
= (cos Do — —) + sir? 261. (62)
A2

419

The amplitudes?,, is calculated by using the{ and
sin2®}, as

Sye = (eXp(—iH'L)) , (63)

_ (Onpdiage"4t, 4L 85 0l)  (64)

AL L PREEpY
221 exp(—i%L) (65)

AL L A
2 exp(—i 212+aL). (66)

Next let us calculates”, from the Hamiltonian(28)
diagonalized by the orthogonal matrti){3

_ .. Y4 .
= —isin2;,sin

_ .. l .
= —isin2;,sin

H" = 013diag(0, 0, A31) 0]; + diag(a, 0, 0)
. T
= Ofydiag(r}, 0, 24)(0s)

(67)
(68)
The eigenvalue.” (i = 1,3) of this Hamiltonian is
given by

W=1(a
i~ 5 31t+a

+ \/(Aglcos Di1z—a)’+ Aglsinz 2913), (69)

wherexﬁ and Ag correspond to the sign-" and the
opposite sign-+'. Moreover, we obtain the effective
mixing angle sin 2], is calculated as

A2, sin? 20

Sir? 297, = . (70)

(A31C08 P13 —a)2 + A§13|n2 2013

From(69) and(70) we obtain the relation

A_}él _ sin 213

Az1 sindly
4 \2

= (cos D13 — —) + Sin? 2013. (71)

A3zl

The amplitudes”

Te

is calculated as

Al L A
321 exp(—i 312+aL). (72)

Substituting(66) and(72) into (44), (45) and(46), we
obtain

h — _iain Wt i
S;. = —isin2y;sin

A >~ sin 27,sin X238in 275

CALL oAb L
x sin =21~ gjn =31

ocAgzL
2 2

2 3

(73)
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1(a) Exact 1(b) Ours 1(c) Difference
0. 0. 0.02
0. 0. o0 N
-0.02f) f
0. 0. \
-0.04f|
< 0. < 0. -0.06f | /
-0.08) \/
-0. -0. -0.1 w
-0.12
0.02 0.050.1 0.2 0.5 1 0.02 0.050.1 0.2 0.5 1 0.02 0.050.1 0.2 0.5 1
E GeV E Gev E GeV
2(a) Exact 2(b) Ours 2(c) Difference
0.01
0.2 0.005
0.1 0 Vo
a0 -0.005 W
-0.01 WV
0.1 0.015 NW ﬁfw‘m
-0. m
- W
0.2 _0.02 w
0.02 0.050.1 0.2 0.5 1 0.02 0.050.1 0.2 0.5 1 0.02 0.050.1 0.2 0.5 1
E GeVv E GeVv E GeV
3(a) Exact 3(b) Ours 3(c) Difference
0.5 0.5 001
0.4 0.4 0
0.3 0.3 -0.01
v 0.2 v 0.2 0,02
0.1 0.1
o o -0.03
0.1 0.1 -0.04

0.02 0.050.1 0.2 0.5 1
E GeV

0.02 0.050.1 0.2 0.5 1
E GeV

0.02 0.050.1 0.2 0.5 1
E GeVv

Fig. 1. Comparison of our reduction fortauwith the exact one in the coefficients, B and C, plotted from top to bottom and the exact,

approximate formula and the t&fence from left to right.

B ~ sin29;,sin Do3sin 275

ASL AL AgL
sin sin sin , 74
x 2 2 2 (74)
AL L
C:cgssin220fzsin2 221
AL
+ 535Sin? 2005 sir? 321 : (75)

The low and high energy MSW effects are contained in
sin2{,, A5, and in sin 2}, A%, of the approximate
formula, respectively. This is the reason why this
approximate formula is applicable to a wide energy
region. The term includings, which is proportional
to siné, is related to T violatior]31-34] However,

it is difficult to observe only this term in future

from the terms including both the coefficient
andB [35-37]

Next let us compare our approximate formula with
the exact one. We use the parametarss, = 7.0 x
107° eV2, Am2; = 2.0 x 1073 eV2, sir? 201, = 0.8,
Sin? 2623 = 1, sind13 = 0.16, the oscillation length
is L =730 km,a = ~/2GfgN,, where G is the
Fermi constant andy, is the electron density in matter
calculated from the matter density= 3 g/cm® and
the electron fractioy, = 0.5. We plot the coefficients
A, B and C as a function of the energy within the
region Q01 GeV< E < 1 GeV. These coefficients
calculated from the exact formula are compared with
those from the approximate formulakig. 1

From this figure we find that the approximate
formula almost coincide with the exact formula. The

long baseline experiments. Therefore, there are manyerror is estimated to be less than 20% fréig. 1
attempts to extract the information on the CP phase The difference between the exact and the approximate
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formulas is caused by ignoring the higher order terms

in the perturbative expansion on 8ii3 ando.

4. Derivation of other approximate formulas

In this section, we derive the approximate formulas
given by other authors in constant matter from our for-
mula. There are formulas for the low enefd9-12]
the intermediate enerdit3—15]and the high energy
regiong[16-18]

4.1. Low energy formula
At first we derive a low energy formula with large

mixing angleds, which is similar to those ifl0-12]
Under the low energy condition

a K Asi, (76)
the following relation

Al sin

i 77)

Az sindf,
is derived by expanding\%, and sin 27 in terms of
a/Azs. Namely,A’:ﬁ)l and sin 2){’3 in matter can be ap-

proximated by the quantities in vacuum. Furthermore,
if we take the limitd1o — /4

. 2
A_’él _sin®ip v A3, +a?
Az sindi, Az
is obtained. By using the relatior§g7) and (78), the

coefficientsA, B and C for (73), (74) and (75) are
reduced to the following expressions

(78)

A~ Sin 2912Sin 29235in 2913

A1
2
W A5+ a?
2
Y A21+a2L A3oL
Sin cos s

2 2 2

2 2
A3 ta
2
V A21+a2L . AszoL

Al sin sin
2 2 27

(79)

Sin 912Sin 2923Sin 2913

X Sin

(80)

421
2 2
A2 . oy A5 t+aL
~ 2L cBasin? 201psin T————
A ta 2
. . o Az1L
+ 555Sin? 2601 3Sin? 321 , (81)

where the condition derived from the low energy
condition(76)

h
Al

. Az1L
sin 3

2 sin
2 2

is also used. The applicable region for energy is given
by

(82)

Am%, 3 g/cnt
ecaseey(ita) (25

from the condition(76). In addition to this condition,
the applicable region q79), (80)and(81)is restricted
by

(83)

E 104 eV?
L k
< (8000 m(GeV)( i )

which comes from the approximation in the oscillation
parts of(79), (80) and (81). A similar result can be
obtained for the perturbation of sinz [19]. They have
proposed a low energy formula in arbitrary matter,
by using the first order perturbative calculations. Our
method has the advantage that the calculation is much
simpler. This approximate formula coincides with
that in vacuum in the low energy limit, or in other
words, this result recovers the vacuum mimicking
phenomenon which has been discussdd %38].

(84)

4.2. Intermediate energy formula

At first we derive the intermediate energy for-
mula[13-15]from our formula. Under the low energy
condition

a < Az, (85)

we expandA, and sin 2/ up to first order ofi/As;
Agl: A31— 2a C0OS D13, (86)

. . 2a
sin29!, ~ sin 2913<1 + - cos 2913) . (87)
31
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Substituting(86) and (87) into (72), we obtain the
expression

. 2
|S% |7 ~ s, sir? 2913<1 + L cos 2813)
Azl

A31— 2aCc0oSd13)L
xsinz( 31 13)

2 (88)
~ 555SiM? 2913[<1 + 2a cos 2913) sirp 231L
Az
—alL cos ZBlgsin(AglL)} , (89)
where we also use the approximation
alcosPi3<K 1 (90)

from the first line to the second line. Furthermore,
under the assumption that>1L/2 is small, we can
approximate

L £
sin AL N A5 L N Ap1L

(91)

— — ’

2 2 2

and from(73), (74), (75), the approximate formula for
A, B andC is derived as

AoqL

sin(Asz1l), (92)

A31L
sing 2312
2

1. . .
A~ > Sin 2012SIiN 238N 213

. . . AL
B >~ sin 912Sin 223Sin 213 21

(93)

Az1L
2

. 2a )
C =~ s25sin? 2913|:<1 + - cos 2913) sir?
31

—al COS$13Sin(A31L)i|. (94)

One of the conditions for the applicable region of this
approximate formula, namely, for the upper limit
2
Amz,

3g/cm?
b eisoaf 20 ) (206r?)

is the same as that in the low energy reg(@6). In
addition to this, the conditions due (80) and(91)

(95)

L < (1700 km (3 g/p Cm3), (96)
Am3, L
E>(0.185 Gev)(ch ev2)(730 km) 97)

should be satisfied. This approximate formula has
been derived by using the perturbations eofand
a/Am%l [13]. From(95), (96)and(97), the applicable
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region is rather restricted because of the expansion
of the oscillation part. On the other hand, it has the

advantage that the contribution of the genuine CP
violation can be easily distinguished from that of the

fake CP violation.

4.3. High energy formula

Next, we derive the high energy formulfs—18]
from our formula. Under the high energy condition

a> A, (98)
we obtain
Ay sindip, (99)

Az sindl, Az

by expandingA4, and sin 2%, up to the first order of
Az1/a. In addition, using the approximatiehs — 0,
we obtain another relation

A _sinPi_,  a

Az sindly Aszy

The concrete expressions4f B andC are derived as
A21431

~a(Az1—a)

sinaL sin
X —_—
2

(100)

Sin 2912sin 29235in 13

(Aan—a)l Azl
2 T2

(101)

A2 A . . .

jad _f2178 sin X12SiN X23SiN Y13

a(Az1—a)

(Az1—a)L . AzpL
Sin

2 27

L
x sina7 sin (102)

A2 al
C ~ =212 sir? 2015Sim? —
22 €23 12 2

2
A3

5 )2 nz (Az1—a)L
31—a

553 sin? 2013Si

’

(103)
by substituting99) and(100)into (73), (74) and(75),
where we also use the approximation
AS L alL

>~ sin—.
si 2

The applicable region of this approximate formula is
calculated from(98) as

sin

(104)

2
Am21

E > (0.45 Ge\/)(ch e\/Z) (3 g{acm3).
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In addition to this, the applicable region is also
restricted by

E 104 eV?
L k
< (8000 m(GeV)( A )

which is derived from(104). Although these high
energy approximate formulg401), (102) and (103)
have been derived at first [(17,18], their derivation is
complicated because of tlvalculation up to the first
order perturbation of. Here, we have presented the
simple derivation of these formulas by using the new
idea of taking only the zeroth order perturbation.

(105)

5. Summary

In this Letter, we study the oscillation probability
in matter within the framework of three generations.
The results are as follows.

1. We have proposed a simple method to approxi-
mate the oscillation probability in arbitrary mat-
ter. Our method provide an approximate formula
in arbitrary matterwithout the usual first order
perturbative calculations of the small parameter
Am3,/Am3, or sinbia.

2. The concrete expressions for our approximate
formula in constant matter has been derived to
investigate the accuracy of the reduction formula
(43)—(46) We have shown that our formula is
numerically in good agreement with the exact
solution with reasonable accuracy.

. We have shown that both the low enerfdp—
12], the intermediate energ¥3—15]and the high
energy[16—18]approximate formulas in constant

matter presented by other authors can be easily

derived from our formula. This means that our
formula is applicable to a wide energy region.
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