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Abstract

We study the CP dependence of neutrino oscillation probability for all channels in arbitrary matter profile within three
generations. We show that an oscillation probability for νe → νµ can be written in the form P (νe → νµ) = Aeµ cos δ +
Beµ sin δ + Ceµ without any approximation using the CP phase δ. This result holds not only in constant matter but also in
arbitrary matter. Another probability for νµ → ντ can be written in the form P (νµ → ντ ) = Aµτ cos δ + Bµτ sinδ + Cµτ +
Dµτ cos 2δ + Eµτ sin 2δ. The term which is proportional to sin 2δ disappear, namely Eµτ = 0, in symmetric matter. It means
that the probability reduces to the same form as in constant matter. As for other channels, probabilities in arbitrary matter are at
most the quadratic polynomials of sin δ and cos δ as in the above two channels. In symmetric matter, the oscillation probability
for each channel reduces to the same form with respect to δ as that in constant matter.
 2002 Elsevier Science B.V.

1. Introduction

In solar and atmospheric neutrino experiments, the νe deficit [1] and the νµ anomaly [2] have been observed.
These results strongly suggest the finite mixing angles θ12 and θ23 and the finite mass squared differences ∆12 and
∆23, where ∆ij = m2

i −m2
j . Within the framework of three generations, there are two more parameters θ13 and δ to

be determined. About θ13, only upper bound is obtained from CHOOZ experiment [3] and the information on the
CP phase δ is not obtained at all. In order to determine these parameters, several long baseline experiments using
artificial neutrino beam will be planned [4], and it is important to study the effect when the neutrino pass through
the matter [5]. The main physics goal in these experiments is to measure the value of δ. In this Letter, we study the
CP dependence of oscillation probability for all channels in arbitrary matter profile.

Before giving our results, let us review the works on CP violation in three neutrino oscillation. At first we
introduce the CP-odd asymmetry �P CP

αβ = P (να → νβ)−P (ν̄α → ν̄β ). In disappearance channel, �P CP
αα is exactly
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equal to 0 in vacuum and independent of δ. However, �P CP
αα is not always equal to 0 in matter. This is due to the

genuine CP violation and/or fake CP violation from matter effects. In the case of α = e, Kuo and Pantaleone [6]
have shown that P (νe → νe) does not depend on δ in the context of solar neutrino problem. Therefore, �P CP

ee �= 0
arises from matter effects.1 However, in the case of α = µ, P (νµ → νµ) has the CP-odd term in asymmetric matter
profile as pointed out by Minakata and Watanabe [7]. We investigate the CP dependence in more detail in this
Letter.

Let us consider the appearance channels. As the CP-odd asymmetry is proportional to sin δ in vacuum,
�P CP

αβ �= 0 means that the discovery of CP violation. However, the situation completely changes when the matter
effects are taken into account. Namely, �P CP

αβ �= 0 does not always mean the existence of CP violation [8], because
the fake CP violation due to matter effects exists [13–15]. Here, it is difficult to separate genuine CP violation due
to δ from fake CP violation. One of the methods to solve these problems is to take into account mass hierarchy
approximation |∆21| � |∆32|. Actually, some approximate formulae are given by Arafune et al. at low energy
region [9] and by Cervera et al. [10] and Freund [11] at high energy region.

Next, we introduce the T-odd asymmetry �P T
αβ = P (να → νβ) − P (νβ → να). Krastev and Petcov [12] have

shown that �P T
αβ is proportional to sin δ exactly in constant matter. Recently, Naumov [17], Harrison and Scott [18]

have derived the simple identity on the Jarlskog factor J [16] as ∆̃12∆̃23∆̃31J̃ = ∆12∆23∆31J , where quantities
with tilde represent those in matter. We can simply understand that �P T

αβ is proportional to sin δ from this identity.
We have studied the matter enhancement of J̃ [19] taking advantage of this identity. Furthermore, Parke and Weiler
have investigated the matter enhancement of the �P T

eµ [20].
There are some works on the deviation from constant matter. In long baseline experiments, we need to estimate

the validity of constant density approximation because the earth matter density largely changes along to the path
of neutrino. The matter profile of the earth is approximately expressed by Preliminary Reference Earth Model
(PREM) [21]. Minakata and Nunokawa [22] give the oscillation probability using mass hierarchy and adiabatic
approximations. For the distance less than L = 3000 km, the matter density fluctuation is small and the constant
density approximation is valid. On the other hand, it has been shown that the fluctuation of the density cannot be
ignored for the distance greater than L = 7000 km [23–26]. Furthermore, the constant density approximation is
not valid in the case that the matter density profile is different from PREM and the asymmetric part exists. It is
pointed out that �P T

αβ has the term proportional to cosδ in arbitrary matter [27,28]. We investigate this feature in
more detail in this Letter.

In previous Letter, we have proposed the new method applicable to constant matter. This method is to estimate
the product of effective Maki–Nakagawa–Sakata matrix elements [29] ŨαiŨ

∗
βi without directly calculating Ũαi .

We have shown that the oscillation probability P (νe → νµ) is written in the linear combination2 of cos δ and sin δ

exactly [31]

(1)P (νe → νµ) = Aeµ cosδ + Beµ sin δ + Ceµ,

in constant matter. In other channels, for example,

(2)P (νµ → ντ ) = Aµτ cosδ + Bµτ sin δ + Cµτ + Dµτ cos 2δ.

It is found that the probability is quadratic polynomial of cos δ, sin δ, and the CP dependence was equal to in
vacuum [32].

In this Letter, we give the exact CP dependence of oscillation probability for all channels in arbitrary matter
profile. For the purpose, we decompose the Hamiltonian H in the form H = (O23Γδ)H

′(O23Γδ)
† using 2–3

1 Minakata and Watanabe have shown that P (νe → νe) slightly depends on δ if we take into account the loop correction even in the standard
model. In this Letter, we do not consider the loop correction as these effects are safely neglected [7].

2 It is not so easy to obtain our result from the effective mixing and effective CP phase given by Zaglauer and Schwarzer [30].
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rotation matrix O23 and CP phase matrix Γδ = diag(1, 1, eiδ). This decomposition plays a key role in our Letter.
As a result, we obtain the probability for νe → νµ as

(3)P (νe → νµ) = Aeµ cosδ + Beµ sin δ + Ceµ.

This has the same form with respect to δ as in Eq. (1) in constant matter. On the other hand, for νµ → ντ , we show
that the probability is given by

(4)P (νµ → ντ ) = Aµτ cosδ + Bµτ sin δ + Cµτ + Dµτ cos 2δ + Eµτ sin 2δ.

Comparing Eq. (4) with (2), the probability in arbitrary matter profile has the term proportional to sin 2δ which
does not exist in the probability for constant matter. Furthermore, in the case of symmetric matter profile, we show
that this additional term disappears, namely Eµτ = 0, and the probability reduces to the same form as in constant
matter.

2. CP dependence in arbitrary matter profile

In this section, we study the exact CP dependence of neutrino oscillation probability in arbitrary matter profile.
The Schrödinger equation for neutrino is

(5)i
∂ν

∂t
= Hν,

where H is the Hamiltonian in matter and ν is flavor eigenstate ν = (νe, νµ, ντ )T . We introduce the MNS matrix
which relates the flavor eigenstate να to the mass eigenstate νi . The MNS matrix U in the standard parametrization
is represented as

(6)U = O23ΓδO13Γ
†
δ O12,

where Γδ = diag(1, 1, eiδ) and

(7)O23 =
(1 0 0

0 c23 s23
0 −s23 c23

)
,

using the abbreviation sij = sin θij and cij = cosθij . O13 and O12 represent 1–3 and 1–2 rotation matrix like O23,
respectively. By using this relation (6), we can rewrite the H as

(8)H = 1
2E

[
U diag(0,∆21,∆31)U† + diag

(
a(t), 0, 0

)]
(9)= 1

2E
O23Γδ

[
O13O12 diag(0,∆21,∆31)OT

12OT
13 + diag

(
a(t), 0, 0

)]
Γ

†
δ OT

23,

where a(t) is matter potential defined by a(t) = 2
√

2 GF N(t)eE, and GF , N(t)e , E are, respectively, Fermi
constant, electron number density and neutrino energy. This Eq. (9) means that the Hamiltonian can be decomposed
into two parts. One is 1–2 and 1–3 mixing part which contain matter effects. The other is 2–3 mixing and CP phase
δ part which does not contain matter effects. It is noted that this decomposition is guaranteed by the relation

(10)O23Γδ diag
(
a(t), 0, 0

)
(O23Γδ)† = diag

(
a(t), 0, 0

)
.

We can separate CP phase δ from matter effects by taking advantage of this decomposition (9). Changing ν to ν′
as

(11)ν′ = (O23Γδ)†ν,
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the Schrödinger equation (5) is rewritten as

(12)i
∂ν′

∂t
= H ′ν′,

where

(13)H ′ = 1
2E

[
O13O12 diag(0,∆12,∆13)(O13O12)T + diag

(
a(t), 0, 0

)]
.

We emphasise that the reduced Hamiltonian H ′ does not contain the 2–3 mixing and CP phase and is real
symmetric. For anti-neutrino, we obtain the similar results by the replacements δ → −δ and in a(t) → −a(t).

Next, we introduce the time evolution operator S(t) and S′(t) which is defined by the solution of the Schrödinger
equation

(14)ν(t) = S(t)ν(0), ν′(t) = S′(t)ν′(0).

The relation between S(t) and S′(t) is determined by the transformation (11) and is given by

(15)S(t) = (O23Γδ)S
′(t)(O23Γδ)†.

By taking the component of (15), the relation between the time evolution operators for each flavour is given by

(16)See = S′
ee,

(17)Sµe = S′
µec23 + S′

τes23eiδ,

(18)Sτe = −S′
µes23 + S′

τec23eiδ,

(19)Sµµ = S′
µµc2

23 + S′
µτ c23s23e−iδ + S′

τµc23s23eiδ + S′
ττ s2

23,

(20)Sτµ = −S′
µµc23s23 − S′

µτ s2
23e−iδ + S′

τµc2
23eiδ + S′

ττ c23s23,

(21)Sττ = S′
µµs2

23 − S′
µτ c23s23e−iδ − S′

τµc23s23eiδ + S′
ττ c2

23.

Here, Sαβ represents the transition amplitude for νβ → να . Seµ, Seτ and Sµτ are obtained from Sµe , Sτe and Sτµ,
respectively, by the replacements S′

αβ → S′
βα , δ → −δ. Substituting (16)–(21) into the relation

(22)P (να → νβ) = |Sβα|2,

the oscillation probabilities in arbitrary matter profile are given by

(23)P (νe → νe) = Cee,

(24)P (νe → νµ) = Aeµ cosδ + Beµ sin δ + Ceµ,

(25)P (νe → ντ ) = Aeτ cosδ + Beτ sin δ + Ceτ ,

(26)P (νµ → νµ) = Aµµ cosδ + Bµµ sin δ + Cµµ + Dµµ cos 2δ + Eµµ sin 2δ,

(27)P (ντ → ντ ) = Aττ cosδ + Bττ sin δ + Cττ + Dττ cos 2δ + Eττ sin 2δ,

(28)P (νµ → ντ ) = Aµτ cosδ + Bµτ sin δ + Cµτ + Dµτ cos 2δ + Eµτ sin 2δ,

and the other probabilities P (νµ → νe), P (ντ → νe) and P (ντ → νµ) are obtained by the replacements S′
αβ → S′

βα

and δ → −δ in P (νe → νµ), P (νe → ντ ) and P (νµ → ντ ), respectively. Here all coefficients Aeµ, . . . ,Eµτ are
constructed from the mixing angle θ23 and S′ including matter effects. See Appendix A for detail. The oscillation
probabilities for “anti-neutrino” are also obtained by the replacements δ → −δ and a(t) → −a(t).

For these Eqs. (23)–(28), we emphasize the following three points. First, the survival probability P (νe → νe)

in Eq. (23) is completely independent of CP phase δ. This coincides with the result by Kuo and Pantaleone [6].
Second, the transition probabilities P (νe → νµ) and P (νe → ντ ) in Eqs. (24) and (25) are linear polynomials of
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sin δ and cosδ. These features coincide with the results in constant matter [31,32]. Third, P (νµ → ντ ), P (νµ → νµ)

and P (ντ → ντ ) in Eqs. (26)–(28) are at most quadratic polynomials of sin δ and cosδ.
We also comment the CP trajectory introduced by Minakata and Nunokawa. This is an orbit in the bi-probability

space when δ changes from 0 to 2π [33,34]. Eq. (23) shows that CP trajectory is exactly elliptic even in arbitrary
matter profile. In addition, we point out that the dependence of θ23 for the oscillation probabilities is completely
understood from Eqs. (23)–(27). See Appendix A for detail.

It is also noted that there are two features in asymmetric matter profile. First, the terms proportional to sin δ and
sin 2δ are appeared in P (νµ → νµ) and P (ντ → ντ ). The term proportional to sin 2δ are appeared in P (νµ → ντ )

and P (ντ → νµ). These terms do not exist in constant matter [31,32]. Second, �P T
αβ is not proportional to sin δ in

asymmetric matter as in constant matter [12]. In the next section, we describe these features in more detail.

3. CP dependence in symmetric matter profile

In this section, we study the CP dependence of P (να → νβ) in symmetric matter profile as special case of the
previous section. In the case of symmetric matter along neutrino path, the time evolution operator S′ becomes
symmetric matrix

(29)S′
αβ = S′

βα,

for flavour indices [28,35]. As results, the relations between the coefficients of P (να → νe) Eqs. (23)–(25) and
P (νe → να) are given by

(30)Aµe = Aeµ, Bµe = −Beµ, Cµe = Ceµ,

(31)Aτe = Aeτ , Bτe = −Beτ , Cτe = Ceτ .

See appendix Appendix B for detail calculation. The probability P (νe → να) have the same form with respect to δ

as Eqs. (23)–(25) in arbitrary matter profile.
On the other hand, applying the condition (29) to the probability (26)–(28) we obtain the remarkable relations

(32)Bµµ = Bττ = Eµµ = Eττ = Eµτ = Eτµ = 0,

where the detailed calculation is given in Appendix B. Using these relations, the oscillation probabilities (26)–(28)
have more simple form such as

(33)P (νµ → νµ) = Aµµ cosδ + Cµµ + Dµµ cos 2δ,

(34)P (ντ → ντ ) = Aττ cosδ + Cττ + Dττ cos 2δ,

(35)P (νµ → ντ ) = Aµτ cosδ + Bµτ sin δ + Cµτ + Dµτ cos 2δ,

and P (ντ → νµ) is simply obtained by replacements Aαβ , Bαβ , Cαβ and Dαβ . Then, the coefficients of P (ντ → νµ)

are given by

(36)Aµτ = Aτµ, Bµτ = −Bτµ, Cµτ = Cτµ, Dµτ = Dτµ,

where we use the condition (29) for Eqs. (36) or the unitarity for last equation. Here, the point is that the term
proportional to sin 2δ is dropped in Eq. (35) comparing with Eq. (28). The other point is that the terms proportional
to sin δ and sin 2δ do not exist in P (νµ → νµ) and P (ντ → ντ ).

As the results, the CP dependence of the oscillation probability for each channel in symmetric matter reduces to
the same form as in constant matter [32]. This is the generalization of the result in our previous Letter.
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Finally, we study the T-odd asymmetry �P T
αβ = P (να → νβ) − P (νβ → να). From the unitarity relation, we

easily obtain

(37)�P T
eµ = �P T

µτ = �P T
τe,

and in symmetric matter profile we obtain

(38)�P T
eµ = (Aeµ − Aµe) cosδ + (Beµ − Bµe) sin δ + (Ceµ − Cµe)

(39)= 2Beµ sin δ

(40)= −4c23s23 Im
[
S′ ∗

µeS′
τe

]
sin δ,

where we use the relations (30) in Eq. (39). In constant matter, Krastev and Petcov [12] have pointed out that
�P T

αβ is proportional to sin δ. Our result is applicable to the symmetric matter profile, which corresponds to the
generalization of their result, even if the oscillation is non-adiabatic.

Let us turn the case of arbitrary matter profile. �P T
αβ in asymmetric matter is not proportional to sin δ because

the time evolution operator S′ is not symmetric, namely S′
αβ �= S′

βα . More concretely speaking, the coefficients are
not symmetric for flavor indices Aαβ �= Aβα , Bαβ �= −Bβα , Cαβ �= Cβα . We clarify the exact CP dependence of
�P T

αβ in asymmetric matter although this fact is suggested using approximation [27,28].

4. Summary

We summarize the results obtained in this Letter. We have studied the CP dependence of the oscillation
probability P (να → νβ) both in arbitrary and in symmetric matter profile.

(i) In arbitrary matter profile, we have found that P (να → νβ) is at most quadratic polynomial of sin δ and cos δ.
The CP dependences of the probabilities can be written as

(41)P (νe → νe) = Cee,

(42)P (να → νβ) = Aαβ cos δ + Bαβ sin δ + Cαβ, for (αβ) = (eµ), (eτ ), (µe), (τe),

(43)
P (να → νβ) = Aαβ cos δ + Bαβ sin δ + Cαβ + Dαβ cos 2δ + Eαβ sin 2δ,

for (αβ) = (µµ), (µτ), (τµ), (ττ ).

(ii) In symmetric matter profile, we have shown that the oscillation probabilities P (νe → νx) have the same form
as in arbitrary matter such as

(44)P (νe → νe) = Cee,

(45)P (νe → νµ) = Aeµ cosδ + Beµ sin δ + Ceµ,

(46)P (νe → ντ ) = Aeτ cosδ + Beτ sin δ + Ceτ .

Furthermore, we have shown that the CP dependences of other probabilities are written in the form as

(47)P (νµ → ντ ) = Aµτ cosδ + Bµτ sin δ + Cµτ + Dµτ cos 2δ,

(48)P (νµ → νµ) = Aµµ cosδ + Cµµ + Dµµ cos 2δ,

(49)P (ντ → ντ ) = Aττ cosδ + Cττ + Dττ cos 2δ.

It is remarkable that the oscillation probability for each channel in symmetric matter reduces to the same form
as in constant matter.
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Appendix A. Coefficients in arbitrary matter profile

In this appendix, we give exact CP and 2–3 mixing dependences of the oscillation probabilities in arbitrary
matter profile. The probability for each channel is given by

(A.1)P (νe → νe) = Cee = ∣∣S′
ee

∣∣2,

(A.2)P (νe → νµ) = Aeµ cosδ + Beµ sin δ + Ceµ,

(A.3)Aeµ = 2 Re
[
S′ ∗

µeS′
τe

]
c23s23,

(A.4)Beµ = −2 Im
[
S′ ∗

µeS′
τe

]
c23s23,

(A.5)Ceµ = ∣∣S′
µe

∣∣2c2
23 + ∣∣S′

τe

∣∣2s2
23,

(A.6)P (νe → ντ ) = Aeτ cosδ + Beτ sin δ + Ceτ ,

(A.7)Aeτ = −2 Re
[
S′ ∗

µeS′
τe

]
c23s23,

(A.8)Beτ = 2 Im
[
S′ ∗

µeS′
τe

]
c23s23,

(A.9)Ceτ = ∣∣S′
µe

∣∣2s2
23 + ∣∣S′

τe

∣∣2c2
23,

(A.10)P (νµ → νµ) = Aµµ cosδ + Bµµ sin δ + Cµµ + Dµµ cos 2δ + Eµµ sin 2δ,

(A.11)Aµµ = 2 Re
[(

S′
µµc2

23 + S′
ττ s2

23
)∗(

S′
τµ + S′

µτ

)]
c23s23,

(A.12)Bµµ = −2 Im
[(

S′
µµc2

23 + S′
ττ s2

23
)∗(

S′
τµ − S′

µτ

)]
c23s23,

(A.13)Cµµ = ∣∣S′
µµ

∣∣2c4
23 + (∣∣S′

µτ

∣∣2 + ∣∣S′
τµ

∣∣2)c2
23s2

23 + ∣∣S′
ττ

∣∣2s4
23 + 2 Re

[
S′ ∗

µµS′
ττ

]
c2

23s2
23,

(A.14)Dµµ = 2 Re
[
S′ ∗

τµS′
µτ

]
c2

23s2
23,

(A.15)Eµµ = 2 Im
[
S′ ∗

τµS′
µτ

]
c2

23s2
23,

(A.16)P (ντ → ντ ) = Aττ cosδ + Bττ sin δ + Cττ + Dττ cos 2δ + Eττ sin 2δ,

(A.17)Aττ = −2 Re
[(

S′
µµs2

23 + S′
ττ c2

23
)∗(

S′
τµ + S′

µτ

)]
c23s23,

(A.18)Bττ = 2 Im
[(

S′
µµs2

23 + S′
ττ c2

23
)∗(

S′
τµ − S′

µτ

)]
c23s23,

(A.19)Cττ = ∣∣S′
µµ

∣∣2s4
23 + (∣∣S′

µτ

∣∣2 + ∣∣S′
τµ

∣∣2)c2
23s2

23 + ∣∣S′
ττ

∣∣2c4
23 + 2 Re

[
S′ ∗

µµS′
ττ

]
c2

23s2
23,

(A.20)Dττ = 2 Re
[
S′ ∗

τµS′
µτ

]
c2

23s2
23,

(A.21)Eττ = 2 Im
[
S′ ∗

τµS′
µτ

]
c2

23s2
23,

(A.22)P (νµ → ντ ) = Aµτ cosδ + Bµτ sin δ + Cµτ + Dµτ cos 2δ + Eµτ sin 2δ,

(A.23)Aµτ = −2 Re
[(

S′
µµ − S′

ττ

)∗(
S′

τµc2
23 − S′

µτ s2
23
)]

c23s23,

(A.24)Bµτ = 2 Im
[(

S′
µµ − S′

ττ

)∗(
S′

τµc2
23 + S′

µτ s2
23
)]

c23s23,

(A.25)Cµτ = (∣∣S′
µµ

∣∣2 + ∣∣S′
ττ

∣∣2)c2
23s2

23 + ∣∣S′
µτ

∣∣2s4
23 + ∣∣S′

τµ

∣∣2c4
23 − 2 Re

[
S′ ∗

µµS′
ττ

]
c2

23s2
23,

(A.26)Dµτ = −2 Re
[
S′ ∗

τµS′
µτ

]
c2

23s2
23,
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(A.27)Eµτ = −2 Im
[
S′ ∗

τµS′
µτ

]
c2

23s2
23,

and the probabilities for the other channels P (νµ → νe), P (ντ → νe) and P (ντ → νµ) are obtained by the
replacements S′

αβ → S′
βα and δ → −δ in P (νe → νµ), P (νe → ντ ) and P (νµ → ντ ), respectively. From these

expressions, we can see that matter effects is renormalized in S′
αβ , which does not contain CP phase δ. Note that

matter effects and CP effects are completely separated in the oscillation probability. The mixing angle θ23 is also
separated from matter effects and all of the oscillation probabilities are quartet polynomials of c23 and s23.

Appendix B. Coefficients in symmetric matter profile

In this appendix, we give the relations of the coefficients of the probability in symmetric matter. We use the
condition

(B.1)S′
αβ = S′

βα,

in symmetric matter profile. First, we calculate the relations between the coefficients of T-conjugate probabilities.
From the oscillation probabilities (A.2) and (A.22) in Appendix A and the symmetry of S′ (B.1), we obtain

(B.2)Aeµ − Aµe = 4c23s23 Re
[
S′ ∗

µeS′
τe − S′ ∗

eµS′
eτ

]= 0,

(B.3)Beµ + Bµe = −4c23s23 Im
[
S′ ∗

µeS′
τe − S′ ∗

eµS′
eτ

]= 0,

(B.4)Ceµ − Cµe = (∣∣S′
µe

∣∣2 − ∣∣S′
eµ

∣∣2)c2
23 + (∣∣S′

τe

∣∣2 − ∣∣S′
eτ

∣∣2)s2
23 = 0,

(B.5)Aµτ − Aτµ = 4 Re
[(

S′
µµ − S′

ττ

)∗(
S′

τµ − S′
µτ

)]= 0,

(B.6)Bµτ + Bτµ = −4 Im
[(

S′
µµ − S′

ττ

)∗(
S′

τµ − S′
µτ

)]= 0,

(B.7)Cµτ − Cτµ = (∣∣S′
µτ

∣∣2 − ∣∣S′
τµ

∣∣2)(s4
23 + c4

23
)= 0,

(B.8)Dµτ − Dτµ = −4
(∣∣S′

µτ

∣∣2 − ∣∣S′
τµ

∣∣2)c2
23s2

23 = 0.

The relations between the coefficients for νe ↔ ντ are obtained in the same way.
Second, we calculate the coefficients of sin δ and sin 2δ in P (νµ → νµ) and P (ντ → ντ ) and the coefficients

of sin 2δ in P (νµ → νµ) and P (ντ → ντ ). From the concrete expression of oscillation probabilities (A.10), (A.16)
and (A.22) in Appendix A, we obtain

(B.9)Bµµ = −2c23s23 Im
[(

S′
µµc2

23 + S′
ττ s2

23
)∗(

S′
τµ − S′

µτ

)]= 0,

(B.10)Eµµ = 2 Im
[
S′ ∗

τµS′
µτ

]
c2

23s2
23 = 2 Im

[∣∣S′
µτ

∣∣2]c2
23s2

23 = 0,

(B.11)Bττ = 2c23s23 Im
[(

S′
µµs2

23 + S′
ττ c2

23
)∗(

S′
τµ − S′

µτ

)]= 0,

(B.12)Eττ = 2 Im
[
S′ ∗

τµS′
µτ

]
c2

23s2
23 = 2 Im

[∣∣S′
µτ

∣∣2]c2
23s2

23 = 0,

(B.13)Eµτ = −2 Im
[
S′ ∗

τµS′
µτ

]
c2

23s2
23 = −2 Im

[∣∣S′
µτ

∣∣2]c2
23s2

23 = 0,

(B.14)Eτµ = 2 Im
[
S′ ∗

µτ S′
τµ

]
c2

23s2
23 = 2 Im

[∣∣S′
τµ

∣∣2]c2
23s2

23 = 0,

from the condition (B.1).
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