9 research outputs found
Gross anatomy of the gluteal and posterior thigh muscles in koalas based on their innervations
コアラのおしりを徹底解剖! --神経分布から筋を特定・前世紀以来の解剖記述不一致を解消--. 京都大学プレスリリース. 2022-09-22.Morphological and functional comparison of convergently-evolved traits in marsupials and eutherians is an important aspect of studying adaptive divergence in mammals. However, the anatomy of marsupials has been particularly difficult to evaluate for multiple reasons. First, previous studies on marsupial anatomy are often uniformly old and non-exhaustive. Second, muscle identification was historically based on muscle attachment sites, but attachment sites have since been declared insufficient for muscle identification due to extensive interspecific variation. For example, different names have been used for muscles that are now thought to be equivalent among several different species, which causes confusion. Therefore, descriptions of marsupial muscles have been inconsistent among previous studies, and their anatomical knowledge itself needs updating. In this study, the koala was selected as the representative marsupial, in part because koala locomotion may comprise primate (eutherian)-like and marsupial-like mechanics, making it an interesting phylogenetic group for studying adaptive divergence in mammals. Gross dissection of the lower limb muscles (the gluteal and the posterior thigh regions) was performed to permit precise muscle identification. We first resolved discrepancies among previous studies by identifying muscles according to their innervation; this recent, more reliable technique is based on the ontogenetic origin of the muscle, and it allows for comparison with other taxa (i.e., eutherians). We compared our findings with those of other marsupials and arboreal primates and identified traits common to both arboreal primates and marsupials as well as muscle morphological features unique to koalas
An Update On Bone Substitutes For Spinal Fusion
With the current advances in spinal surgery, an understanding of the precise biological mechanism of each bone substitute is necessary for inducing successful spinal fusion. In this review, the categories of bone substitutes include allografts, ceramics, demineralized bone matrix, osteoinductive factors, autogenous platelet concentrate, mesenchymal stem cells, and gene therapy. Further, clinical studies have been evaluated by their levels of evidence in order to elucidate the precise effect of the bone substitute employed and to establish clinical guidance. This article will review both clinical studies based on evidence and basic research in current advances in order to avoid as far as possible any chances of failure in the future and to understand cellular biology in novel technologies.Wo