584 research outputs found
Extended M1 sum rule for excited symmetric and mixed-symmetry states in nuclei
A generalized M1 sum rule for orbital magnetic dipole strength from excited
symmetric states to mixed-symmetry states is considered within the
proton-neutron interacting boson model of even-even nuclei. Analytic
expressions for the dominant terms in the B(M1) transition rates from the first
and second states are derived in the U(5) and SO(6) dynamic symmetry
limits of the model, and the applicability of a sum rule approach is examined
at and in-between these limits. Lastly, the sum rule is applied to the new data
on mixed-symmetry states of 94Mo and a quadrupole d-boson ratio
is obtained in a largely
parameter-independent wayComment: 19 pages, 3 figures, Revte
Simulation of dimensionality effects in thermal transport
The discovery of nanostructures and the development of growth and fabrication
techniques of one- and two-dimensional materials provide the possibility to
probe experimentally heat transport in low-dimensional systems. Nevertheless
measuring the thermal conductivity of these systems is extremely challenging
and subject to large uncertainties, thus hindering the chance for a direct
comparison between experiments and statistical physics models. Atomistic
simulations of realistic nanostructures provide the ideal bridge between
abstract models and experiments. After briefly introducing the state of the art
of heat transport measurement in nanostructures, and numerical techniques to
simulate realistic systems at atomistic level, we review the contribution of
lattice dynamics and molecular dynamics simulation to understanding nanoscale
thermal transport in systems with reduced dimensionality. We focus on the
effect of dimensionality in determining the phononic properties of carbon and
semiconducting nanostructures, specifically considering the cases of carbon
nanotubes, graphene and of silicon nanowires and ultra-thin membranes,
underlying analogies and differences with abstract lattice models.Comment: 30 pages, 21 figures. Review paper, to appear in the Springer Lecture
Notes in Physics volume "Thermal transport in low dimensions: from
statistical physics to nanoscale heat transfer" (S. Lepri ed.
A Kinematically Complete Measurement of the Proton Structure Function F2 in the Resonance Region and Evaluation of Its Moments
We measured the inclusive electron-proton cross section in the nucleon
resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2
with the CLAS detector. The large acceptance of CLAS allowed for the first time
the measurement of the cross section in a large, contiguous two-dimensional
range of Q**2 and x, making it possible to perform an integration of the data
at fixed Q**2 over the whole significant x-interval. From these data we
extracted the structure function F2 and, by including other world data, we
studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate
higher twist contributions. The small statistical and systematic uncertainties
of the CLAS data allow a precise extraction of the higher twists and demand
significant improvements in theoretical predictions for a meaningful comparison
with new experimental results.Comment: revtex4 18 pp., 12 figure
First measurement of direct photoproduction on the proton
We report on the results of the first measurement of exclusive
meson photoproduction on protons for GeV and GeV. Data were collected with the CLAS detector at the Thomas
Jefferson National Accelerator Facility. The resonance was detected via its
decay in the channel by performing a partial wave analysis of the
reaction . Clear evidence of the meson
was found in the interference between and waves at GeV. The -wave differential cross section integrated in the mass range of
the was found to be a factor of 50 smaller than the cross section
for the meson. This is the first time the meson has been
measured in a photoproduction experiment
Observation of exclusive DVCS in polarized electron beam asymmetry measurements
We report the first results of the beam spin asymmetry measured in the
reaction e + p -> e + p + gamma at a beam energy of 4.25 GeV. A large asymmetry
with a sin(phi) modulation is observed, as predicted for the interference term
of Deeply Virtual Compton Scattering and the Bethe-Heitler process. The
amplitude of this modulation is alpha = 0.202 +/- 0.028. In leading-order and
leading-twist pQCD, the alpha is directly proportional to the imaginary part of
the DVCS amplitude.Comment: 6 pages, 5 figure
eta-prime photoproduction on the proton for photon energies from 1.527 to 2.227 GeV
Differential cross sections for the reaction gamma p -> eta-prime p have been
measured with the CLAS spectrometer and a tagged photon beam with energies from
1.527 to 2.227 GeV. The results reported here possess much greater accuracy
than previous measurements. Analyses of these data indicate for the first time
the coupling of the etaprime N channel to both the S_11(1535) and P_11(1710)
resonances, known to couple strongly to the eta N channel in photoproduction on
the proton, and the importance of j=3/2 resonances in the process.Comment: 6 pages, 3 figure
Measurement of the Deuteron Structure Function F2 in the Resonance Region and Evaluation of Its Moments
Inclusive electron scattering off the deuteron has been measured to extract
the deuteron structure function F2 with the CEBAF Large Acceptance Spectrometer
(CLAS) at the Thomas Jefferson National Accelerator Facility. The measurement
covers the entire resonance region from the quasi-elastic peak up to the
invariant mass of the final-state hadronic system W~2.7 GeV with four-momentum
transfers Q2 from 0.4 to 6 (GeV/c)^2. These data are complementary to previous
measurements of the proton structure function F2 and cover a similar
two-dimensional region of Q2 and Bjorken variable x. Determination of the
deuteron F2 over a large x interval including the quasi-elastic peak as a
function of Q2, together with the other world data, permit a direct evaluation
of the structure function moments for the first time. By fitting the Q2
evolution of these moments with an OPE-based twist expansion we have obtained a
separation of the leading twist and higher twist terms. The observed Q2
behaviour of the higher twist contribution suggests a partial cancellation of
different higher twists entering into the expansion with opposite signs. This
cancellation, found also in the proton moments, is a manifestation of the
"duality" phenomenon in the F2 structure function
Complete measurement of three-body photodisintegration of 3He for photon energies between 0.35 and 1.55 GeV
The three-body photodisintegration of 3He has been measured with the CLAS
detector at Jefferson Lab, using tagged photons of energies between 0.35 GeV
and 1.55 GeV. The large acceptance of the spectrometer allowed us for the first
time to cover a wide momentum and angular range for the two outgoing protons.
Three kinematic regions dominated by either two- or three-body contributions
have been distinguished and analyzed. The measured cross sections have been
compared with results of a theoretical model, which, in certain kinematic
ranges, have been found to be in reasonable agreement with the data.Comment: 22 pages, 25 eps figures, 2 tables, submitted to PRC. Modifications:
removed 2 figures, improvements on others, a few minor modifications to the
tex
Electron Scattering From High-Momentum Neutrons in Deuterium
We report results from an experiment measuring the semi-inclusive reaction
where the proton is moving at a large angle relative to the
momentum transfer. If we assume that the proton was a spectator to the reaction
taking place on the neutron in deuterium, the initial state of that neutron can
be inferred. This method, known as spectator tagging, can be used to study
electron scattering from high-momentum (off-shell) neutrons in deuterium. The
data were taken with a 5.765 GeV electron beam on a deuterium target in
Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section
was extracted for different values of final-state missing mass ,
backward proton momentum and momentum transfer . The data
are compared to a simple PWIA spectator model. A strong enhancement in the data
observed at transverse kinematics is not reproduced by the PWIA model. This
enhancement can likely be associated with the contribution of final state
interactions (FSI) that were not incorporated into the model. A ``bound neutron
structure function'' was extracted as a function of and
the scaling variable at extreme backward kinematics, where effects of
FSI appear to be smaller. For MeV/c, where the neutron is far
off-shell, the model overestimates the value of in the region of
between 0.25 and 0.6. A modification of the bound neutron structure
function is one of possible effects that can cause the observed deviation.Comment: 33 pages RevTeX, 9 figures, to be submitted to Phys. Rev. C. Fixed 1
Referenc
- …
