463 research outputs found

    Sub-slab mantle anisotropy beneath south-central Chile

    Get PDF
    Knowledge of mantle flow in convergent margins is crucial to unravelling both the contemporary geodynamics and the past evolution of subduction zones. By analysing shear-wave splitting in both teleseismic and local arrivals, we can determine the relative contribution from different parts of the subduction zone to the total observed SKS splitting, providing us with a depth constraint on anisotropy. We use this methodology to determine the location, orientation and strength of seismic anisotropy in the south-central Chile subduction zone. Data come from the TIPTEQ network, deployed on the forearc during 2004–2005. We obtain 110 teleseismic SKS and 116 local good-quality shear-wave splitting measurements. SKS average delay times are 1.3 s and local S delay times are only 0.2 s. Weak shear-wave splitting from local phases is consistent with a shape preferred orientation (SPO) source in the upper crust. We infer that the bulk of shear-wave splitting is sourced either within or below the subducting Nazca slab. SKS splitting measurements exhibit an average north-easterly fast direction, with a strong degree of variation. Further investigation suggests a relationship between the measurement's fast direction and the incoming ray's back-azimuth. Finite-element geodynamic modelling is used to investigate the strain rate field and predicted LPO characteristics in the subduction zone. These models highlight a thick region of high strain rate and strong S-wave anisotropy, with plunging olivine a-axes, in the sub-slab asthenosphere. We forward model the sub-slab sourced splitting with a strongly anisotropic layer of thick asthenosphere, comprising an olivine a-axis oriented parallel to the direction of subduction. The subducting lithosphere is not thick enough to cause 1.2 s of splitting, therefore our results and subsequent models show that the Nazca slab is entraining the underlying asthenosphere; its flow causes it to be strongly anisotropic. Our observation has important implications for the controlling factors on sub-slab mantle flow and the movement of asthenospheric material within the Earth

    Piezoelectric-based apparatus for strain tuning

    Get PDF
    We report the design and construction of piezoelectric-based apparatus for applying continuously tuneable compressive and tensile strains to test samples. It can be used across a wide temperature range, including cryogenic temperatures. The achievable strain is large, so far up to 0.23% at cryogenic temperatures. The apparatus is compact and compatible with a wide variety of experimental probes. In addition, we present a method for mounting high-aspect-ratio samples in order to achieve high strain homogeneity.Comment: 8 pages, 8 figure

    Multi‐Scale Rupture Growth With Alternating Directions in a Complex Fault Network During the 2023 South‐Eastern Türkiye and Syria Earthquake Doublet

    Get PDF
    A devastating doublet of earthquakes with moment magnitude MW 7.9 and MW 7.6 earthquakes contiguously occurred in SE Türkiye near the NW border of Syria. Here we perform a potency-density tensor inversion to simultaneously estimate rupture evolution and fault geometry for the doublet. We find the initial MW 7.9 earthquake involved discrete episodes of supershear rupture and back-rupture propagation, and was triggered by initial rupture along a bifurcated splay of the East Anatolian Fault. The second MW 7.6 event was triggered by the earlier MW 7.9 event, and it involved more extensive supershear rupture along a favorably curved fault, and was likely stopped by geometric barriers at the fault ends. Our results highlight the multi-scale cascading rupture growth across the complex fault network that affects the diverse rupture geometries of the 2023 Türkiye earthquake doublet, contributing to the strong ground shaking and associated devastation

    The 2010<i>M</i><sub>w</sub>8.8 Maule, Chile earthquake: Nucleation and rupture propagation controlled by a subducted topographic high

    Get PDF
    Knowledge of seismic properties in an earthquake rupture zone is essential for understanding the factors controlling rupture dynamics. We use data from aftershocks following the Maule earthquake to derive a three-dimensional seismic velocity model of the central Chile forearc. At 36°S, we find a highvp (&gt;7.0 km/s) and high vp/vs(?1.89) anomaly lying along the megathrust at 25 km depth, which coincides with a strong forearc Bouguer gravity signal. We interpret this as a subducted topographic high, possibly a former seamount on the Nazca slab. The Maule earthquake nucleated at the anomaly's updip boundary; yet high co-seismic slip occurred where the megathrust is overlain by lower seismic velocities. Sparse aftershock seismicity occurs within this structure, suggesting that it disrupts normal interface seismogenesis. These findings imply that subducted structures can be conducive to the nucleation of large megathrust earthquakes, even if they subsequently hinder co-seismic slip and aftershock activity

    Local seismicity around the Chain Transform Fault at the Mid-Atlantic Ridge from OBS observations

    Get PDF
    Summary Seismicity along transform faults provides important constraints for our understanding of the factors that control earthquake ruptures. Oceanic transform faults are particularly informative due to their relatively simple structure in comparison to their continental counterparts. The seismicity of several fast-moving transform faults has been investigated by local networks, but as of today there been few studies of transform faults in slow spreading ridges. Here we present the first local seismicity catalogue based on event data recorded by a temporary broadband network of 39 ocean bottom seismometers located around the slow-moving Chain Transform Fault (CTF) along the Mid-Atlantic Ridge (MAR) from March 2016 to March 2017. We locate 972 events in the area by simultaneously inverting for a 1-D velocity model informed by the event P- and S-arrival times. We refine the depths and focal mechanisms of the larger events using deviatoric moment tensor inversion. Most of the earthquakes are located along the CTF (700) and Romanche transform fault (94) and the MAR (155); a smaller number (23) can be observed on the continuing fracture zones or in intraplate locations. The ridge events are characterised by normal faulting and most of the transform events are characterised by strike slip faulting, but with several reverse mechanisms that are likely related to transpressional stresses in the region. CTF events range in magnitude from 1.1 to 5.6 with a magnitude of completeness around 2.3. Along the CTF we calculate a b-value of 0.81 ± 0.09. The event depths are mostly shallower than 15 km below sea level (523), but a small number of high-quality earthquakes (16) are located deeper, with some (8) located deeper than the brittle-ductile transition as predicted by the 600˚C-isotherm from a simple thermal model. The deeper events could be explained by the control of seawater infiltration on the brittle failure limit

    Tortillas on the roaster: Central America’s maize–bean systems and the changing climate

    Get PDF
    Maize and beans are a vital component of human diets and culture in Central America. More than a million smallholder families grow these crops for subsistence, producing 70% of the maize and 100% of the beans consumed locally. Average yields are low, however – 1.5 t/ha for maize and 0.7 t/ha for beans – on the approximately 2.5 million hectares of land sown to these crops (40% of the total area harvested) in El Salvador, Guatemala, Honduras, and Nicaragua. In the years to come, a harsher climate together with soil degradation1, widespread poverty, and rural people’s limited access to services and infrastructure will pose challenging obstacles to production. By 2025, these pressures could result in total annual losses of maize and bean production in the four countries of around 350,000 t – with a gross production value of around US$120 million. To ward off this threat to the food security of some 100,000 households, effective adaptation strategies must be developed in collaboration with stakeholders in the maize and bean value chains. These strategies require strong public support and must draw on both scientific and community knowledge
    corecore