251 research outputs found

    Biodiversity-rich European grasslands : ancient, forgotten ecosystems

    Get PDF
    Worldwide reforestation has been recommended as a landscape restoration strategy to mitigate climate change in areas where the climate can sustain forest. This approach may threaten grassland ecosystems of unique biodiversity as such policies are based on the false assumption that most grasslands are man-made. Here, we use multiple lines of evidence (palaeoecological, pedological, phylogenetic, palaeontological) from Central Eastern Europe and show that various types of grasslands have persisted in this area throughout the postglacial i.e., the past 11,700 years. A warm and dry climate, frequent fires, herbivore pressure and early Neolithic settlements kept forests open until widespread forest clearance beginning 4000 to 3000 years ago. Closed forest cover has been the exception for the last two million years. This long-term persistence has likely contributed to the high biodiversity of these grasslands. Consequently, we call for a more cautious prioritisation of the protection of what may be erroneously considered natural, i.e. forests, by many environmental specialists and managers. Instead we provide a new framework for a better understanding of the evolution and persistence of different grassland types and their biodiversity, so that grasslands can be better understood, valued and conserved

    Effect of changing vegetation and precipitation on denudation – Part 2: Predicted landscape response to transient climate and vegetation cover over millennial to million-year timescales

    Get PDF
    We present a numerical modeling investigation into the interactions between transient climate and vegetation cover with hillslope and detachment limited fluvial processes. Model simulations were designed to investigate topographic patterns and behavior resulting from changing climate and the associated changes in surface vegetation cover. The Landlab surface process model was modified to evaluate the effects of temporal variations in vegetation cover on hillslope diffusion and fluvial erosion. A suite of simulations were conducted to represent present-day climatic conditions and satellite derived vegetation cover at four different research areas in the Chilean Coastal Cordillera. These simulations included steady-state simulations as well as transient simulations with forcings in either climate or vegetation cover over millennial to million-year timescales. Two different transient variations in climate and vegetation cover including a step change in climate or vegetation were used, as well as 100&thinsp;kyr oscillations over 5&thinsp;Myr. We conducted eight different step-change simulations for positive and negative perturbations in either vegetation cover or climate and six simulations with oscillating transient forcings for either vegetation cover, climate, or oscillations in both vegetation cover and climate. Results indicate that the coupled influence of surface vegetation cover and mean annual precipitation shifts basin landforms towards a new steady state, with the magnitude of the change being highly sensitive to the initial vegetation and climate conditions of the basin. Dry, non-vegetated basins show higher magnitudes of adjustment than basins that are situated in wetter conditions with higher vegetation cover. For coupled conditions when surface vegetation cover and mean annual precipitation change simultaneously, the landscape response tends to be weaker. When vegetation cover and mean annual precipitation change independently from one another, higher magnitude shifts in topographic metrics are predicted. Changes in vegetation cover show a higher impact on topography for low initial surface cover values; however, for areas with high initial surface cover, the effect of changes in precipitation dominate the formation of landscapes. This study demonstrates the sensitivity of catchment characteristics to different transient forcings in vegetation cover and mean annual precipitation, with initial vegetation and climate conditions playing a crucial role.</p

    Ecosystem productivity affected the spatiotemporal disappearance of Neanderthals in Iberia

    Get PDF
    What role did fluctuations play in biomass availability for secondary consumers in the disappearance of Neanderthals and the survival of modern humans? To answer this, we quantify the effects of stadial and interstadial conditions on ecosystem productivity and human spatiotemporal distribution patterns during the Middle to Upper Palaeolithic transition (50,000?30,000 calibrated years before the present) in Iberia. First, we used summed probability distribution, optimal linear estimation and Bayesian age modelling to reconstruct an updated timescale for the transition. Next, we executed a generalized dynamic vegetation model to estimate the net primary productivity. Finally, we developed a macroecological model validated with present-day observations to calculate herbivore abundance. The results indicate that, in the Eurosiberian region, the disappearance of Neanderthal groups was contemporaneous with a significant decrease in the available biomass for secondary consumers, and the arrival of the first Homo sapiens populations coincided with an increase in herbivore carrying capacity. During stadials, the Mediterranean region had the most stable conditions and the highest biomass of medium and medium?large herbivores. These outcomes support an ecological cause for the hiatus between the Mousterian and Aurignacian technocomplexes in Northern Iberia and the longer persistence of Neanderthals in southern latitudes.This research was funded by the European Research Council under the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement number 818299; SUBSILIENCE project; https://www.subsilience.eu). We thank all of our colleagues from the EvoAdapta group for constant enriching discussions

    On the potential vegetation feedbacks that enhance phosphorus availability &ndash; insights from a process-based model linking geological and ecological timescales

    Get PDF
    In old and heavily weathered soils, the availability of P might be so small that the primary production of plants is limited. However, plants have evolved several mechanisms to actively take up P from the soil or mine it to overcome this limitation. These mechanisms involve the active uptake of P mediated by mycorrhiza, biotic de-occlusion through root clusters, and the biotic enhancement of weathering through root exudation. The objective of this paper is to investigate how and where these processes contribute to alleviate P limitation on primary productivity. To do so, we propose a process-based model accounting for the major processes of the carbon, water, and P cycles including chemical weathering at the global scale. Implementing P limitation on biomass synthesis allows the assessment of the efficiencies of biomass production across different ecosystems. We use simulation experiments to assess the relative importance of the different uptake mechanisms to alleviate P limitation on biomass production. We find that active P uptake is an essential mechanism for sustaining P availability on long timescales, whereas biotic de-occlusion might serve as a buffer on timescales shorter than 10 000 yr. Although active P uptake is essential for reducing P losses by leaching, humid lowland soils reach P limitation after around 100 000 yr of soil evolution. Given the generalized modelling framework, our model results compare reasonably with observed or independently estimated patterns and ranges of P concentrations in soils and vegetation. Furthermore, our simulations suggest that P limitation might be an important driver of biomass production efficiency (the fraction of the gross primary productivity used for biomass growth), and that vegetation on old soils has a smaller biomass production rate when P becomes limiting. With this study, we provide a theoretical basis for investigating the responses of terrestrial ecosystems to P availability linking geological and ecological timescales under different environmental settings

    Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model

    Get PDF
    The LPJ-GUESS dynamic vegetation model uniquely combines an individual- and patch-based representation of vegetation dynamics with ecosystem biogeochemical cycling from regional to global scales. We present an updated version that includes plant and soil N dynamics, analysing the implications of accounting for C–N interactions on predictions and performance of the model. Stand structural dynamics and allometric scaling of tree growth suggested by global databases of forest stand structure and development were well reproduced by the model in comparison to an earlier multi-model study. Accounting for N cycle dynamics improved the goodness of fit for broadleaved forests. N limitation associated with low N-mineralisation rates reduces productivity of cold-climate and dry-climate ecosystems relative to mesic temperate and tropical ecosystems. In a model experiment emulating free-air CO<sub>2</sub> enrichment (FACE) treatment for forests globally, N limitation associated with low N-mineralisation rates of colder soils reduces CO<sub>2</sub> enhancement of net primary production (NPP) for boreal forests, while some temperate and tropical forests exhibit increased NPP enhancement. Under a business-as-usual future climate and emissions scenario, ecosystem C storage globally was projected to increase by ca. 10%; additional N requirements to match this increasing ecosystem C were within the high N supply limit estimated on stoichiometric grounds in an earlier study. Our results highlight the importance of accounting for C–N interactions in studies of global terrestrial N cycling, and as a basis for understanding mechanisms on local scales and in different regional contexts

    The transformation of the forest steppe in the lower Danube Plain of south-eastern Europe : 6000 years of vegetation and land use dynamics

    Get PDF
    Forest steppes are dynamic ecosystems, highly susceptible to changes in climate and land use. Here we examine the Holocene history of the European forest steppe ecotone in the Lower Danube Plain to better understand its sensitivity to climate fluctuations and human impact, and the timing of its transition into a cultural forest steppe. We used multi-proxy analyses (pollen, n-alkane, coprophilous fungi, charcoal, and geochemistry) of a 6000-year sequence from Lake Oltina (SE Romania), combined with a REVEALS model of quantitative vegetation cover. We found the greatest tree cover, composed of xerothermic (Carpinus orientalis and Quercus) and temperate (Carpinus betulus, Tilia, Ulmus and Fraxinus) tree taxa between 6000 and 2500 cal yr BP. Maximum tree cover (~ 50 %) occurred between 4200 and 2500 cal yr BP at a time of wetter climatic conditions. Compared to other European forest steppe areas, the dominance of Carpinus orientalis represents the most distinct feature of the woodland's composition during that time. Forest loss was under way by 2500 yr BP (Iron Age) with REVEALS estimates indicating a fall to ~ 20 % tree cover from the mid-Holocene forest maximum linked to clearance for agriculture, while climate conditions remained wet. Biomass burning increased markedly at 2500 cal yr BP suggesting that fire was regularly used as a management tool until 1000 cal yr BP when woody vegetation became scarce. A sparse tree cover, with only weak signs of forest recovery, then became a permanent characteristic of the Lower Danube Plain, highlighting recurring anthropogenic pressure. The timing of anthropogenic ecosystem transformation here (2500 cal yr BP) was in between that in central eastern (between 3700 and 3000 cal yr BP) and eastern (after 2000 cal yr BP) Europe. Our study is the first quantitative land cover estimate at the forest steppe ecotone in south eastern Europe spanning 6000 years and provides critical empirical evidence that the present-day forest steppe/woodlands reflects the potential natural vegetation in this region under current climate conditions. This study also highlights the potential of n-alkane indices for vegetation reconstruction, particularly in dry regions where pollen is poorly preserved

    Tree migration-rates : narrowing the gap between inferred post-glacial rates and projected rates

    Get PDF
    Faster-than-expected post-glacial migration rates of trees have puzzled ecologists for a long time. In Europe, post-glacial migration is assumed to have started from the three southern European peninsulas (southern refugia), where large areas remained free of permafrost and ice at the peak of the last glaciation. However, increasing palaeobotanical evidence for the presence of isolated tree populations in more northerly microrefugia has started to change this perception. Here we use the Northern Eurasian Plant Macrofossil Database and palaeoecological literature to show that post-glacial migration rates for trees may have been substantially lower (60–260 m yr–1) than those estimated by assuming migration from southern refugia only (115–550 m yr–1), and that early-successional trees migrated faster than mid- and late-successional trees. Post-glacial migration rates are in good agreement with those recently projected for the future with a population dynamical forest succession and dispersal model, mainly for early-successional trees and under optimal conditions. Although migration estimates presented here may be conservative because of our assumption of uniform dispersal, tree migration-rates clearly need reconsideration. We suggest that small outlier populations may be a key factor in understanding past migration rates and in predicting potential future range-shifts. The importance of outlier populations in the past may have an analogy in the future, as many tree species have been planted beyond their natural ranges, with a more beneficial microclimate than their regional surroundings. Therefore, climate-change-induced range-shifts in the future might well be influenced by such microrefugia
    • …
    corecore