134 research outputs found

    Combining ecosystem modeling with serious gaming in support of transboundary maritime spatial planning

    Get PDF
    The Maritime Spatial Planning (MSP) Challenge simulation platform helps planners and stakeholders understand and manage the complexity of MSP. In the interactive simulation, different data layers covering an entire sea region can be viewed to make an assessment of the current status. Users can create scenarios for future uses of the marine space over a period of several decades. Changes in energy infrastructure, shipping, and the marine environment are then simulated, and the effects are visualized using indicators and heat maps. The platform is built with advanced game technology and uses aspects of role-play to create interactive sessions; it can thus be referred to as serious gaming. To calculate and visualize the effects of planning decisions on the marine ecology, we integrated the Ecopath with Ecosim (EwE) food web modeling approach into the platform. We demonstrate how EwE was connected to MSP, considering the range of constraints imposed by running scientific software in interactive serious gaming sessions while still providing cascading ecological feedback in response to planning actions. We explored the connection by adapting two published ecological models for use in MSP sessions. We conclude with lessons learned and identify future developments of the simulation platform

    Challenges of achieving good environmental status in the Northeast Atlantic

    Get PDF
    The sustainable exploitation of marine ecosystem services is dependent on achieving and maintaining an adequate ecosystem state to prevent undue deterioration. Within the European Union, the Marine Strategy Framework Directive (MSFD) requires member states to achieve Good Environmental Status (GEnS), specified in terms of 11 descriptors. We analyzed the complexity of social-ecological factors to identify common critical issues that are likely to influence the achievement of GEnS in the Northeast Atlantic (NEA) more broadly, using three case studies. A conceptual model developed using a soft systems approach highlights the complexity of social and ecological phenomena that influence, and are likely to continue to influence, the state of ecosystems in the NEA. The development of the conceptual model raised four issues that complicate the implementation of the MSFD, the majority of which arose in the Pressures and State sections of the model: variability in the system, cumulative effects, ecosystem resilience, and conflicting policy targets. The achievement of GEnS targets for the marine environment requires the recognition and negotiation of trade-offs across a broad policy landscape involving a wide variety of stakeholders in the public and private sectors. Furthermore, potential cumulative effects may introduce uncertainty, particularly in selecting appropriate management measures. There also are endogenous pressures that society cannot control. This uncertainty is even more obvious when variability within the system, e.g., climate change, is accounted for. Also, questions related to the resilience of the affected ecosystem to specific pressures must be raised, despite a lack of current knowledge. Achieving good management and reaching GEnS require multidisciplinary assessments. The soft systems approach provides one mechanism for bringing multidisciplinary information together to look at the problems in a different light

    Resolving issues with environmental impact assessment of marine renewable energy installations

    Get PDF
    ArticleThis Document is Protected by copyright and was first published by Frontiers. All rights reserved. it is reproduced with permission.Growing concerns about climate change and energy security have fueled a rapid increase in the development of marine renewable energy installations (MREIs). The potential ecological consequences of increased use of these devices emphasizes the need for high quality environmental impact assessment (EIA). We demonstrate that these processes are hampered severely, primarily because ambiguities in the legislation and lack of clear implementation guidance are such that they do not ensure robust assessment of the significance of impacts and cumulative effects. We highlight why the regulatory framework leads to conceptual ambiguities and propose changes which, for the most part, do not require major adjustments to standard practice. We emphasize the importance of determining the degree of confidence in impacts to permit the likelihood as well as magnitude of impacts to be quantified and propose ways in which assessment of population-level impacts could be incorporated into the EIA process. Overall, however, we argue that, instead of trying to ascertain which particular developments are responsible for tipping an already heavily degraded marine environment into an undesirable state, emphasis should be placed on better strategic assessment.Technology Strategy Boar

    Nuclear reprocessing-related radiocarbon (<sup>14</sup>C) uptake in UK marine mammals

    Get PDF
    To evaluate the transfer of Sellafield-derived radiocarbon (14C) to top predators in the UK marine environment, 14C activities were examined in stranded marine mammals. All samples of harbour porpoise (Phocoena phocoena) obtained from the Irish Sea showed 14C enrichment above background. Mammal samples obtained from the West of Scotland, including harbour porpoise, grey seals (Halichoerus grypus) and harbour seals (Phoca vitulina) showed 14C enrichment but to a lesser extent. This study demonstrates, for the first time, enriched 14C is transferred through the marine food web to apex predators as a consequence of ongoing nuclear reprocessing activities at Sellafield. Total Sellafield 14C discharge activity 24 months prior to stranding and, in particular, distance of animal stranding site from Sellafield are significant variables affecting individual 14C activity. 14C activities of West of Scotland harbour porpoises suggest they did not forage in the Irish Sea prior to stranding, indicating a high foraging fidelity

    Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the world's marine ecosystems

    Get PDF
    Existing estimates of fish and consumer biomass in the world’s oceans are disparate. This creates uncertainty about the roles of fish and other consumers in biogeochemical cycles and ecosystem processes, the extent of human and environmental impacts and fishery potential. We develop and use a size-based macroecological model to assess the effects of parameter uncertainty on predicted consumer biomass, production and distribution. Resulting uncertainty is large (e.g. median global biomass 4.9 billion tonnes for consumers weighing 1 g to 1000 kg; 50% uncertainty intervals of 2 to 10.4 billion tonnes; 90% uncertainty intervals of 0.3 to 26.1 billion tonnes) and driven primarily by uncertainty in trophic transfer efficiency and its relationship with predator-prey body mass ratios. Even the upper uncertainty intervals for global predictions of consumer biomass demonstrate the remarkable scarcity of marine consumers, with less than one part in 30 million by volume of the global oceans comprising tissue of macroscopic animals. Thus the apparently high densities of marine life seen in surface and coastal waters and frequently visited abundance hotspots will likely give many in society a false impression of the abundance of marine animals. Unexploited baseline biomass predictions from the simple macroecological model were used to calibrate a more complex size- and trait-based model to estimate fisheries yield and impacts. Yields are highly dependent on baseline biomass and fisheries selectivity. Predicted global sustainable fisheries yield increases ≈4 fold when smaller individuals (< 20 cm from species of maximum mass < 1kg) are targeted in all oceans, but the predicted yields would rarely be accessible in practice and this fishing strategy leads to the collapse of larger species if fishing mortality rates on different size classes cannot be decoupled. Our analyses show that models with minimal parameter demands that are based on a few established ecological principles can support equitable analysis and comparison of diverse ecosystems. The analyses provide insights into the effects of parameter uncertainty on global biomass and production estimates, which have yet to be achieved with complex models, and will therefore help to highlight priorities for future research and data collection. However, the focus on simple model structures and global processes means that non-phytoplankton primary production and several groups, structures and processes of ecological and conservation interest are not represented. Consequently, our simple models become increasingly less useful than more complex alternatives when addressing questions about food web structure and function, biodiversity, resilience and human impacts at smaller scales and for areas closer to coasts

    Risky business: the combined effects of fishing and changes in primary productivity on fish communities

    Get PDF
    There is an increasing need to understand ecosystem responses to multiple stressors in that such complex responses depend not only on species-level responses, but also on species interactions and ecosystem structure. In this study, we used a multi-model ecosystem simulation approach to explore the combined effects of fishing and primary productivity on different components of the food-web across a suite of ecosystems and a range of model types. Simulations were carried out under different levels of primary productivity and various fishing scenarios. In addition to exploring synergistic, additive or antagonistic combined effects of multiple stressors, we included a fourth category “dampened”, which refers to less negative or less positive impacts compared to additive ones, and in contrast to previous studies, we explicitly considered the direction (positive or negative) of the combined effects. We focused on two specific combined effects (negative synergism and positive dampened) associated with the risk of resultant lower fish biomass than expected under additive effects. Through a meta-analysis of the multi-models' simulation results, we found that (i) the risk of negative synergism was generally higher for low-trophic-level (LTL) taxa, implying that following an increase of fishing pressure on a given LTL stock, the subsequent decrease of biomass under low primary productivity would be larger than expected under additive effects and (ii) the risk of positive dampened effects was generally higher for high-trophic-level (HTL) taxa, implying that given a management measure aimed at reducing the impact of fishing on HTL stocks, the subsequent rebuilding of these stocks would be slower than expected. Our approach to categorizing and exploring cumulative effects can be applied to evaluate other community properties, and provide guidance for fisheries management

    Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning

    Get PDF
    Background and purpose: The electrocardiogram (ECG) is frequently obtained in the work-up of COVID-19 patients. So far, no study has evaluated whether ECG-based machine learning models have added value to predict in-hospital mortality specifically in COVID-19 patients. / Methods: Using data from the CAPACITY-COVID registry, we studied 882 patients admitted with COVID-19 across seven hospitals in the Netherlands. Raw format 12-lead ECGs recorded within 72 h of admission were studied. With data from five hospitals (n = 634), three models were developed: (a) a logistic regression baseline model using age and sex, (b) a least absolute shrinkage and selection operator (LASSO) model using age, sex and human annotated ECG features, and (c) a pre-trained deep neural network (DNN) using age, sex and the raw ECG waveforms. Data from two hospitals (n = 248) was used for external validation. / Results: Performances for models a, b and c were comparable with an area under the receiver operating curve of 0.73 (95% confidence interval [CI] 0.65–0.79), 0.76 (95% CI 0.68–0.82) and 0.77 (95% CI 0.70–0.83) respectively. Predictors of mortality in the LASSO model were age, low QRS voltage, ST depression, premature atrial complexes, sex, increased ventricular rate, and right bundle branch block. / Conclusion: This study shows that the ECG-based prediction models could be helpful for the initial risk stratification of patients diagnosed with COVID-19, and that several ECG abnormalities are associated with in-hospital all-cause mortality of COVID-19 patients. Moreover, this proof-of-principle study shows that the use of pre-trained DNNs for ECG analysis does not underperform compared with time-consuming manual annotation of ECG features

    Part-time and full-time medical specialists, are there differences in allocation of time?

    Get PDF
    BACKGROUND: An increasing number of medical specialists prefer to work part-time. This development can be found worldwide. Problems to be faced in the realization of part-time work in medicine include the division of night and weekend shifts, as well as communication between physicians and continuity of care. People tend to think that physicians working part-time are less devoted to their work, implying that full-time physicians complete a greater number of tasks. The central question in this article is whether part-time medical specialists allocate their time differently to their tasks than full-time medical specialists. METHODS: A questionnaire was sent by mail to all internists (N = 817), surgeons (N = 693) and radiologists (N = 621) working in general hospitals in the Netherlands. Questions were asked about the actual situation, such as hours worked and night and weekend shifts. The response was 53% (n = 411) for internists, 52% (n = 359) for surgeons, and 36% (n = 213) for radiologists. Due to non-response on specific questions there were 367 internists, 316 surgeons, and 71 radiologists included in the analyses. Multilevel analyses were used to analyze the data. RESULTS: Part-time medical specialists do not spend proportionally more time on direct patient care. With respect to night and weekend shifts, part-time medical specialists account for proportionally more or an equal share of these shifts. The number of hours worked per FTE is higher for part-time than for full-time medical specialists, although this difference is only significant for surgeons. CONCLUSION: In general, part-time medical specialists do their share of the job. However, we focussed on input only. Besides input, output like the numbers of services provided deserves attention as well. The trend in medicine towards more part-time work has an important consequence: more medical specialists are needed to get the work done. Therefore, a greater number of medical specialists have to be trained. Part-time work is not only a female concern; there are also (international) trends for male medical specialists that show a decline in the number of hours worked. This indicates an overall change in attitudes towards the number of hours medical specialists should work

    Metabolic pathway alignment between species using a comprehensive and flexible similarity measure

    Get PDF
    Comparative analysis of metabolic networks in multiple species yields important information on their evolution, and has great practical value in metabolic engineering, human disease analysis, drug design etc. In this work, we aim to systematically search for conserved pathways in two species, quantify their similarities, and focus on the variations between themElectrical Engineering, Mathematics and Computer Scienc

    The Ocean Decade - opportunities for oceans and human health programs to contribute to public health.

    Get PDF
    This is the final version. Available from the American Public Health Association via the DOI in this record. The COVID-19 pandemic reminds us that our health is vulnerable to immediate threats emerging from the ecosystems we inhabit. More insidious global threats include the increasingly overt consequences of climate change, biodiversity loss, and pollution. As the largest connected ecosystem on Earth, the global ocean exerts a greater influence than any other on our climate and weather, affecting global food production and international trade. Much more importantly, human health is intricately linked to “ocean health.” The United Nations has announced the Decade of Ocean Science for Sustainable Development from 2021 to 2030 (http://bit.ly/3kePT9f). Public health and medical professionals should embrace this timely opportunity to transform the way we interact with our seas. We call for a revitalized, inclusive endeavor to repair the damage we have done during our careless past and to protect the myriad benefits available in the future. Making amends will necessitate bringing together ocean researchers, health professionals, coastal communities, policymakers, and other stakeholders to work on delivering a resilient, sustainable ocean that fosters improvements in public health.European Union’s Horizon 2020European Union’s Horizon 2020Natural Environment Research CouncilUKR
    corecore