1,137 research outputs found

    The Ebola outbreak, 2013-2016: old lessons for new epidemics

    Get PDF
    Ebola virus causes a severe haemorrhagic fever in humans with high case fatality and significant epidemic potential. The 2013–2016 outbreak in West Africa was unprecedented in scale, being larger than all previous outbreaks combined, with 28 646 reported cases and 11 323 reported deaths. It was also unique in its geographical distribution and multicountry spread. It is vital that the lessons learned from the world's largest Ebola outbreak are not lost. This article aims to provide a detailed description of the evolution of the outbreak. We contextualize this outbreak in relation to previous Ebola outbreaks and outline the theories regarding its origins and emergence. The outbreak is described by country, in chronological order, including epidemiological parameters and implementation of outbreak containment strategies. We then summarize the factors that led to rapid and extensive propagation, as well as highlight the key successes, failures and lessons learned from this outbreak and the response

    Unstable Attractors: Existence and Robustness in Networks of Oscillators With Delayed Pulse Coupling

    Full text link
    We consider unstable attractors; Milnor attractors AA such that, for some neighbourhood UU of AA, almost all initial conditions leave UU. Previous research strongly suggests that unstable attractors exist and even occur robustly (i.e. for open sets of parameter values) in a system modelling biological phenomena, namely in globally coupled oscillators with delayed pulse interactions. In the first part of this paper we give a rigorous definition of unstable attractors for general dynamical systems. We classify unstable attractors into two types, depending on whether or not there is a neighbourhood of the attractor that intersects the basin in a set of positive measure. We give examples of both types of unstable attractor; these examples have non-invertible dynamics that collapse certain open sets onto stable manifolds of saddle orbits. In the second part we give the first rigorous demonstration of existence and robust occurrence of unstable attractors in a network of oscillators with delayed pulse coupling. Although such systems are technically hybrid systems of delay differential equations with discontinuous `firing' events, we show that their dynamics reduces to a finite dimensional hybrid system system after a finite time and hence we can discuss Milnor attractors for this reduced finite dimensional system. We prove that for an open set of phase resetting functions there are saddle periodic orbits that are unstable attractors.Comment: 29 pages, 8 figures,submitted to Nonlinearit

    Roles of inflammatory cell infiltrate in periprosthetic osteolysis

    Get PDF
    Classically, particle-induced periprosthetic osteolysis at the implant–bone interface has explained the aseptic loosening of joint replacement. This response is preceded by triggering both the innate and acquired immune response with subsequent activation of osteoclasts, the bone-resorbing cells. Although particle-induced periprosthetic osteolysis has been considered a foreign body chronic inflammation mediated by myelomonocytic-derived cells, current reports describe wide heterogeneous inflammatory cells infiltrating the periprosthetic tissues. This review aims to discuss the role of those non-myelomonocytic cells in periprosthetic tissues exposed to wear particles by showing original data. Specifically, we discuss the role of T cells (CD3+, CD4+, and CD8+) and B cells (CD20+) coexisting with CD68+/TRAP− multinucleated giant cells associated with both polyethylene and metallic particles infiltrating retrieved periprosthetic membranes. This review contributes valuable insight to support the complex cell and molecular mechanisms behind the aseptic loosening theories of orthopedic implants

    Receptor activator of nuclear factor-kappa B ligand (RANKL) directly modulates the gene expression profile of RANK-positive Saos-2 human osteosarcoma cells

    Get PDF
    Receptor activator of nuclear factor κB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) are the key regulators of bone metabolism. Recent findings demonstrated a crucial role of RANK in several bone-associated tumors. Indeed, we have recently demonstrated functional RANK expression both in a mouse and several human osteosarcoma cell lines. However, RANKL effects on osteosarcoma cells remain to be determined. In this study, we determined RANKL effects on RANK-positive Saos-2 human osteosarcoma cells. cDNA microarray and quantitative RT-PCR analyses clearly demonstrated that RANK-positive osteosarcoma cells were the target of RANKL as well as osteoclasts/osteoclast precursors. Thus, we present for the first time that RANKL can directly and significantly modulate gene expression of RANK-expressing Saos-2 cells. RANKL-modulated genes included genes that were implicated in protein metabolism, nucleic acid metabolism, intracellular transport, cytoskeleton organization and biogenesis, apoptosis and signaling cascade. Our results strengthen the involvement of the RANK/RANKL/OPG axis in osteosarcoma biology and capability to identify novel therapeutic approaches targeting RANK-positive osteosarcomas

    Osteoprotegerin regulates cancer cell migration through SDF-1/CXCR4 axis and promotes tumour development by increasing neovascularization

    Get PDF
    We previously reported that OPG is involved in ischemic tissue neovascularization through the secretion of SDF-1 by pretreated-OPG endothelial colony-forming cells (ECFCs). As the vascularization is one of the key factor influencing the tumour growth and cancer cell dissemination, we investigated whether OPG was able to modulate the invasion of human MNNG-HOS osteosarcoma and DU145 prostate cancer cell lines in vitro and in vivo. Cell motility was analysed in vitro by using Boyden chambers. Human GFP-labelled MMNG-HOS cells were inoculated in immunodeficient mice and the tumour nodules formed were then injected with OPG and/or FGF-2, AMD3100 or 0.9% NaCl (control group). Tumour growth was manually followed and angiogenesis was assessed by immunohistochemistry. In vitro, SDF-1 released by OPG-pretreated ECFCs markedly attracted both MNNG-HOS and DU145 cells and induced spontaneous migration of cancer cells. In vivo, tumour volumes were significantly increased in OPG-treated group compared to the control group and OPG potentiated the effect of FGF-2. Concomitantly, OPG alone or combined with FGF-2 increased the number of new vasculature compared to the control group. Interestingly AMD3100, an inhibitor of SDF-1, prevented the in vivo effects of OPG induced by SDF-1 This study provides experimental evidence that OPG promotes tumour development trough SDF-1/CXCR4 axis

    Thixotropy in macroscopic suspensions of spheres

    Get PDF
    An experimental study of the viscosity of a macroscopic suspension, i.e. a suspension for which Brownian motion can be neglected, under steady shear is presented. The suspension is prepared with a high packing fraction and is density-matched in a Newtonian carrier fluid. The viscosity of the suspension depends on the shear rate and the time of shearing. It is shown for the first time that a macroscopic suspension shows thixotropic viscosity, i.e. shear-thinning with a long relaxation time as a unique function of shear. The relaxation times show a systematic decrease with increasing shear rate. These relaxation times are larger when decreasing the shear rates, compared to those observed after increasing the shear. The time scales involved are about 10000 times larger than the viscous time scale and about 1000 times smaller than the thermodynamic time scale. The structure of the suspension at the outer cylinder of a viscometer is monitored with a camera, showing the formation of a hexagonal structure. The temporal decrease of the viscosity under shear coincides with the formation of this hexagonal pattern

    Scheduling in virtual infrastructure

    Get PDF
    For the execution of the scientific applications, different methods have been proposed to dynamically provide execution environments for such applications that hide the complexity of underlying distributed and heterogeneous infrastructures. Recently virtualization has emerged as a promising technology to provide such environments. Virtualization is a technology that abstracts away the details of physical hardware and provides virtualized resources for high-level scientific applications. Virtualization offers a cost-effective and flexible way to use and manage computing resources. Such an abstraction is appealing in Grid computing and Cloud computing for better matching jobs (applications) to computational resources. This work applies the virtualization concept to the Condor dynamic resource management system by using Condor Virtual Universe to harvest the existing virtual computing resources to their maximum utility. It allows existing computing resources to be dynamically provisioned at run-time by users based on application requirements instead of statically at design-time thereby lay the basis for efficient use of the available resources, thus providing way for the efficient use of the available resources.En la ejecución de aplicaciones científicas, existen diversas propuestas cuyo objetivo es proporcionar entornos adecuados de ejecución que oculten la complejidad de las infraestructuras distribuidas y heterogéneas subyacentes a las aplicaciones. Recientemente, la virtualización ha emergido como una prometedora tecnología que permite abstraer los detalles del hardware, mediante la asignación de recursos virtualizados a las aplicaciones científicas de altas necesidades de cómputo. La virtualización ofrece una solución rentable y además permite una gestión flexible de recursos. Este nivel de abstracción es deseable en entornos de Grid Computing y Cloud Computing para obtener una planificación adecuada de tarea (aplicaciones) sobre los recursos computacionales. Este trabajo aplica el concepto de virtualización al sistema gestor dinámico de recursos Condor, mediante la utilización de Condor Virtual Universe para conseguir una máxima utilización de los recursos computacionales virtuales. Además, permite que los recursos de cómputo existentes sean proporcionados dinámicamente en tiempo de ejecución por los usuarios, en función de los requisitos de la aplicación, en lugar de mantener la definición estática definida en tiempo de diseño, y así sentar las bases del uso eficiente de los recursos disponibles.En l'execució d'aplicacions científiques, existeixen diverses propostes amb l'objectiu de proporcionar entorns adequats d'execució que amaguin la complexitat de les infraestructures distribuïdes i heterogènies subjacents a les aplicacions. Recentment, la virtualització ha sorgit com una prometedora tecnologia que ha de permetre abstraure els detalls del hardware, mitjançant l'assignació de recursos virtualitzats a les aplicacions científiques amb altes necessitats de còmput. La virtualizatzació ofereix una solució rentable i a més permet una gestió flexible de recursos. Aquest nivell d'abstracció es desitjable en entorns de Grid Computing i Cloud Computing per a obtenir una planificació adequada del treball (aplicacions) sobre els recursos computacionals. Aquest treball aplica el concepte de virtualització al sistema gestor dinàmic de recursos Condor, mitjançant la utilització de Condor Virtual Universe per aconseguir una màxima utilització dels recursos computacionals virtuals. A més, permet que els recursos de còmput existents siguin proporcionats dinàmicament en temps d'execució pels usuaris, en funció dels requisits de l'aplicació, en lloc de mantenir la definició estàtica definida en temps de disseny, i així assentar unes bases per l'ús eficient dels recursos disponibles

    Advances in osteosarcoma

    Get PDF
    Purpose of Review This article gives a brief overview of the most recent developments in osteosarcoma treatment, including targeting of signaling pathways, immune checkpoint inhibitors, drug delivery strategies as single or combined approaches, and the identification of new therapeutic targets to face this highly heterogeneous disease. Recent Findings Osteosarcoma is one of the most common primary malignant bone tumors in children and young adults, with a high risk of bone and lung metastases and a 5-year survival rate around 70% in the absence of metastases and 30% if metastases are detected at the time of diagnosis. Despite the novel advances in neoadjuvant chemotherapy, the effective treatment for osteosarcoma has not improved in the last 4 decades. The emergence of immunotherapy has transformed the paradigm of treatment, focusing therapeutic strategies on the potential of immune checkpoint inhibitors. However, the most recent clinical trials show a slight improvement over the conventional polychemotherapy scheme. Summary The tumor microenvironment plays a crucial role in the pathogenesis of osteosarcoma by controlling the tumor growth, the metastatic process and the drug resistance and paved the way of new therapeutic options that must be validated by accurate pre-clinical studies and clinical trials

    The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO₂ and CH₄ retrieval algorithm products with measurements from the TCCON

    Get PDF
    Column-averaged dry-air mole fractions of carbon dioxide and methane have been retrieved from spectra acquired by the TANSO-FTS (Thermal And Near-infrared Sensor for carbon Observations-Fourier Transform Spectrometer) and SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Cartography) instruments on board GOSAT (Greenhouse gases Observing SATellite) and ENVISAT (ENVIronmental SATellite), respectively, using a range of European retrieval algorithms. These retrievals have been compared with data from ground-based high-resolution Fourier transform spectrometers (FTSs) from the Total Carbon Column Observing Network (TCCON). The participating algorithms are the weighting function modified differential optical absorption spectroscopy (DOAS) algorithm (WFMD, University of Bremen), the Bremen optimal estimation DOAS algorithm (BESD, University of Bremen), the iterative maximum a posteriori DOAS (IMAP, Jet Propulsion Laboratory (JPL) and Netherlands Institute for Space Research algorithm (SRON)), the proxy and full-physics versions of SRON's RemoTeC algorithm (SRPR and SRFP, respectively) and the proxy and full-physics versions of the University of Leicester's adaptation of the OCO (Orbiting Carbon Observatory) algorithm (OCPR and OCFP, respectively). The goal of this algorithm inter-comparison was to identify strengths and weaknesses of the various so-called round- robin data sets generated with the various algorithms so as to determine which of the competing algorithms would proceed to the next round of the European Space Agency's (ESA) Greenhouse Gas Climate Change Initiative (GHG-CCI) project, which is the generation of the so-called Climate Research Data Package (CRDP), which is the first version of the Essential Climate Variable (ECV) "greenhouse gases" (GHGs). For XCO₂, all algorithms reach the precision requirements for inverse modelling (< 8 ppm), with only WFMD having a lower precision (4.7 ppm) than the other algorithm products (2.4–2.5 ppm). When looking at the seasonal relative accuracy (SRA, variability of the bias in space and time), none of the algorithms have reached the demanding < 0.5 ppm threshold. For XCH₄, the precision for both SCIAMACHY products (50.2 ppb for IMAP and 76.4 ppb for WFMD) fails to meet the < 34 ppb threshold for inverse modelling, but note that this work focusses on the period after the 2005 SCIAMACHY detector degradation. The GOSAT XCH₄ precision ranges between 18.1 and 14.0 ppb. Looking at the SRA, all GOSAT algorithm products reach the < 10 ppm threshold (values ranging between 5.4 and 6.2 ppb). For SCIAMACHY, IMAP and WFMD have a SRA of 17.2 and 10.5 ppb, respectively

    Lipidic cubic phase serial millisecond crystallography using synchrotron radiation.

    Get PDF
    Lipidic cubic phases (LCPs) have emerged as successful matrixes for the crystallization of membrane proteins.Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs). Here, the adaptation of this technology to perform serial millisecond crystallography (SMX) at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven protonpump bacteriorhodopsin (bR) at a resolution of 2.4 A ° . The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway
    corecore