795 research outputs found

    What can be learned from binding energy differences about nuclear structure: the example of delta V_{pn}

    Full text link
    We perform an analysis of a binding energy difference called delta V_{pn}(N,Z) =- 1/4(E(Z,N)-E(Z,N-2)-E(Z-2,N)+ E(Z-2,N-2) in the framework of a realistic nuclear model. Using the angular-momentum and particle-number projected generator coordinate method and the Skyrme interaction SLy4, we analyze the contribution brought to delta V_{pn} by static deformation and dynamic fluctuations around the mean-field ground state. Our method gives a good overall description of delta V_{pn} throughout the chart of nuclei with the exception of the anomaly related to the Wigner energy along the N=Z line. The main conclusions of our analysis are that (i) the structures seen in the systematics of delta V_{pn} throughout the chart of nuclei can be easily explained combining a smooth background related to the symmetry energy and correlation energies due to deformation and collective fluctuations; (ii) the characteristic pattern of delta V_{pn} around a doubly-magic nucleus is a trivial consequence of the asymmetric definition of delta V_{pn}, and not due to a the different structure of these nuclei; (iii) delta V_{pn} does not provide a very reliable indicator for structural changes; (iv) \delta V_{pn} does not provide a reliable measure of the proton-neutron interaction in the nuclear EDF, neither of that between the last filled orbits, nor of the one summed over all orbits; (v) delta V_{pn} does not provide a conclusive benchmark for nuclear EDF methods that is superior or complementary to other mass filters such as two-nucleon separation energies or Q values.Comment: 19 pages and 12 figure

    From Crystalline to Amorphous Germania Bilayer Films at the Atomic Scale: Preparation and Characterization

    No full text
    A new two-dimensional (2D) germanium dioxide film has been prepared. The film consists of interconnected germania tetrahedral units forming a bilayer structure, weakly coupled to the supporting Pt(111) metal-substrate. Density functional theory calculations predict a stable structure of 558-membered rings for germania films, while for silica films 6-membered rings are preferred. By varying the preparation conditions the degree of order in the germania films is tuned. Crystalline, intermediate ordered and purely amorphous film structures are resolved by analysing scanning tunnelling microscopy images

    From Crystalline to Amorphous Germania Bilayer Films at the Atomic Scale: Preparation and Characterization

    Get PDF
    A new two-dimensional (2D) germanium dioxide film has been prepared. The film consists of interconnected germania tetrahedral units forming a bilayer structure, weakly coupled to the supporting Pt(111) metal-substrate. Density functional theory calculations predict a stable structure of 558-membered rings for germania films, while for silica films 6-membered rings are preferred. By varying the preparation conditions the degree of order in the germania films is tuned. Crystalline, intermediate ordered and purely amorphous film structures are resolved by analysing scanning tunnelling microscopy images

    Coframe teleparallel models of gravity. Exact solutions

    Get PDF
    The superstring and superbrane theories which include gravity as a necessary and fundamental part renew an interest to alternative representations of general relativity as well as the alternative models of gravity. We study the coframe teleparallel theory of gravity with a most general quadratic Lagrangian. The coframe field on a differentiable manifold is a basic dynamical variable. A metric tensor as well as a metric compatible connection is generated by a coframe in a unique manner. The Lagrangian is a general linear combination of Weitzenb\"{o}ck's quadratic invariants with free dimensionless parameters \r_1,\r_2,\r_3. Every independent term of the Lagrangian is a global SO(1,3)-invariant 4-form. For a special choice of parameters which confirms with the local SO(1,3) invariance this theory gives an alternative description of Einsteinian gravity - teleparallel equivalent of GR. We prove that the sign of the scalar curvature of a metric generated by a static spherical-symmetric solution depends only on a relation between the free parameters. The scalar curvature vanishes only for a subclass of models with \r_1=0. This subclass includes the teleparallel equivalent of GR. We obtain the explicit form of all spherically symmetric static solutions of the ``diagonal'' type to the field equations for an arbitrary choice of free parameters. We prove that the unique asymptotic-flat solution with Newtonian limit is the Schwarzschild solution that holds for a subclass of teleparallel models with \r_1=0. Thus the Yang-Mills-type term of the general quadratic coframe Lagrangian should be rejected.Comment: 28 pages, Latex error is fixe

    Bosons Confined in Optical Lattices: the Numerical Renormalization Group revisited

    Get PDF
    A Bose-Hubbard model, describing bosons in a harmonic trap with a superimposed optical lattice, is studied using a fast and accurate variational technique (MF+NRG): the Gutzwiller mean-field (MF) ansatz is combined with a Numerical Renormalization Group (NRG) procedure in order to improve on both. Results are presented for one, two and three dimensions, with particular attention to the experimentally accessible momentum distribution and possible satellite peaks in this distribution. In one dimension, a comparison is made with exact results obtained using Stochastich Series Expansion.Comment: 10 pages, 15 figure

    Optimal Monte Carlo Updating

    Get PDF
    Based on Peskun's theorem it is shown that optimal transition matrices in Markov chain Monte Carlo should have zero diagonal elements except for the diagonal element corresponding to the largest weight. We will compare the statistical efficiency of this sampler to existing algorithms, such as heat-bath updating and the Metropolis algorithm. We provide numerical results for the Potts model as an application in classical physics. As an application in quantum physics we consider the spin 3/2 XY model and the Bose-Hubbard model which have been simulated by the directed loop algorithm in the stochastic series expansion framework.Comment: 6 pages, 5 figures, replaced with published versio

    Intruder bands and configuration mixing in the lead isotopes

    Full text link
    A three-configuration mixing calculation is performed in the context of the interacting boson model with the aim to describe recently observed collective bands built on low-lying 0+0^+ states in neutron-deficient lead isotopes. The configurations that are included correspond to the regular, spherical states as well as two-particle two-hole and four-particle four-hole excitations across the Z=82 shell gap.Comment: 20 pages, 4 figures, accepted by PRC, reference added for section 1 in this revised versio

    A New Approach to Large-Scale Nuclear Structure Calculations

    Get PDF
    A new approach to large-scale nuclear structure calculations, based on the Density Matrix Renormalization Group (DMRG), is described. The method is tested in the context of a problem involving many identical nucleons constrained to move in a single large-j shell and interacting via a pairing plus quadrupole interaction. In cases in which exact diagonalization of the hamiltonian is possible, the method is able to reproduce the exact results for the ground state energy and the energies of low-lying excited states with extreme precision. Results are also presented for a model problem in which exact solution is not feasible.Comment: 6 pages + 1 eps figur

    Configuration mixing in 188^{188}Pb : band structure and electromagnetic properties

    Full text link
    In the present paper, we carry out a detailed analysis of the presence and mixing of various families of collective bands in 188^{188}Pb. Making use of the interacting boson model, we construct a particular intermediate basis that can be associated with the unperturbed bands used in more phenomenological studies. We use the E2 decay to construct a set of collective bands and discuss in detail the B(E2)-values. We also perform an analysis of these theoretical results (Q, B(E2)) to deduce an intrinsic quadrupole moment and the associated quadrupole deformation parameter, using an axially deformed rotor model.Comment: submitted to pr

    Critical view of WKB decay widths

    Full text link
    A detailed comparison of the expressions for the decay widths obtained within the semiclassical WKB approximation using different approaches to the tunneling problem is performed. The differences between the available improved formulae for tunneling near the top and the bottom of the barrier are investigated. Though the simple WKB method gives the right order of magnitude of the decay widths, a small number of parameters are often fitted. The need to perform the fitting procedure remaining consistently within the WKB framework is emphasized in the context of the fission model based calculations. Calculations for the decay widths of some recently found super heavy nuclei using microscopic alpha-nucleus potentials are presented to demonstrate the importance of a consistent WKB calculation. The half-lives are found to be sensitive to the density dependence of the nucleon-nucleon interaction and the implementation of the Bohr-Sommerfeld quantization condition inherent in the WKB approach.Comment: 18 pages, Late
    corecore