40 research outputs found

    Addition of Amines to a Carbonyl Ligand: Syntheses, Characterization, and Reactivities of Iridium(III) Porphyrin Carbamoyl Complexes

    Get PDF
    Treatment of (carbonyl)chloro(meso-tetra-p-tolylporphyrinato)iridium(III), (TTP)Ir(CO)Cl (1), with excess primary amines at 23 °C in the presence of Na2CO3 produces the trans-amine-coordinated iridium carbamoyl complexes (TTP)Ir(NH2R)[C(O)NHR] (R = Bn (2a), n-Bu (2b), i-Pr (2c), t-Bu (2d)) with isolated yields up to 94%. The trans-amine ligand is labile and can be replaced with quinuclidine (1-azabicyclo[2.2.2]octane, ABCO), 1-methylimidazole (1-MeIm), triethyl phosphite (P(OEt)3), and dimethylphenylphosphine (PMe2Ph) at 23 °C to afford the hexacoordinated carbamoyl complexes (TTP)Ir(L)[C(O)NHR] (for R = Bn: L = ABCO (3a), 1-MeIm (4a), P(OEt)3 (5a), PMe2Ph (6a)). On the basis of ligand displacement reactions and equilibrium studies, ligand binding strengths to the iridium metal center were found to decrease in the order PMe2Ph \u3e P(OEt)3 \u3e 1-MeIm \u3e ABCO \u3e BnNH2 ≫ Et3N, PCy3. The carbamoyl complexes (TTP)Ir(L)[C(O)NHR] (L = RNH2 (2a,b), 1-MeIm (4a)) undergo protonolysis with HBF4 to give the cationic carbonyl complexes [(TTP)Ir(NH2R)(CO)]BF4 (7a,b) and [(TTP)Ir(1-MeIm)(CO)]BF4 (8), respectively. In contrast, the carbamoyl complexes (TTP)Ir(L)[C(O)NHR] (L = P(OEt)3 (5a), PMe2Ph (6a,c)) reacted with HBF4 to afford the complexes [(TTP)Ir(PMe2Ph)]BF4 (9) and [(TTP)IrP(OEt)3]BF4 (10), respectively. The carbamoyl complexes (TTP)Ir(L)[C(O)NHR] (L = RNH2 (2a–d), 1-MeIm (4a), P(OEt)3 (5b), PMe2Ph (6c)) reacted with methyl iodide to give the iodo complexes (TTP)Ir(L)I (L = RNH2 (11a–d), 1-MeIm (12), P(OEt)3(13), PMe2Ph (14)). Reactions of the complexes [(TTP)Ir(PMe2Ph)]BF4 (9) and [(TTP)IrP(OEt)3]BF4 (10) with [Bu4N]I, benzylamine (BnNH2), and PMe2Ph afforded (TTP)Ir(PMe2Ph)I (14), (TTP)Ir[P(OEt)3]I (13), [(TTP)Ir(PMe2Ph)(NH2Bn)]BF4 (16), and trans-[(TTP)Ir(PMe2Ph)2]BF4 (17), respectively. Metrical details for the molecular structures of 4a and17 are reported

    Decrypting magnetic fabrics (AMS, AARM, AIRM) through the analysis of mineral shape fabrics and distribution anisotropy

    Get PDF
    The fieldwork was supported by the DIPS project (grant no. 240467) and the MIMES project (grant no. 244155) funded by the Norwegian Research Council awarded to O.G. O.P.'s position was funded from Y-TEC.Anisotropy of magnetic susceptibility (AMS) and anisotropy of magnetic remanence (AARM and AIRM) are efficient and versatile techniques to indirectly determine rock fabrics. Yet, deciphering the source of a magnetic fabric remains a crucial and challenging step, notably in the presence of ferrimagnetic phases. Here we use X-ray micro-computed tomography to directly compare mineral shape-preferred orientation and spatial distribution fabrics to AMS, AARM and AIRM fabrics from five hypabyssal trachyandesite samples. Magnetite grains in the trachyandesite are euhedral with a mean aspect ratio of 1.44 (0.24 s.d., long/short axis), and > 50% of the magnetite grains occur in clusters, and they are therefore prone to interact magnetically. Amphibole grains are prolate with magnetite in breakdown rims. We identified three components of the petrofabric that influence the AMS of the analyzed samples: the magnetite and the amphibole shape fabrics and the magnetite spatial distribution. Depending on their relative strength, orientation and shape, these three components interfere either constructively or destructively to produce the AMS fabric. If the three components are coaxial, the result is a relatively strongly anisotropic AMS fabric (P’ = 1.079). If shape fabrics and/or magnetite distribution are non-coaxial, the resulting AMS is weakly anisotropic (P’ = 1.012). This study thus reports quantitative petrofabric data that show the effect of magnetite distribution anisotropy on magnetic fabrics in igneous rocks, which has so far only been predicted by experimental and theoretical models. Our results have first-order implications for the interpretation of petrofabrics using magnetic methods.Publisher PDFPeer reviewe

    Translational toxicology in setting occupational exposure limits for dusts and hazard classification – a critical evaluation of a recent approach to translate dust overload findings from rats to humans

    Get PDF
    Background We analyze the scientific basis and methodology used by the German MAK Commission in their recommendations for exposure limits and carcinogen classification of “granular biopersistent particles without known specific toxicity” (GBS). These recommendations are under review at the European Union level. We examine the scientific assumptions in an attempt to reproduce the results. MAK’s human equivalent concentrations (HECs) are based on a particle mass and on a volumetric model in which results from rat inhalation studies are translated to derive occupational exposure limits (OELs) and a carcinogen classification. Methods We followed the methods as proposed by the MAK Commission and Pauluhn 2011. We also examined key assumptions in the metrics, such as surface area of the human lung, deposition fractions of inhaled dusts, human clearance rates; and risk of lung cancer among workers, presumed to have some potential for lung overload, the physiological condition in rats associated with an increase in lung cancer risk. Results The MAK recommendations on exposure limits for GBS have numerous incorrect assumptions that adversely affect the final results. The procedures to derive the respirable occupational exposure limit (OEL) could not be reproduced, a finding raising considerable scientific uncertainty about the reliability of the recommendations. Moreover, the scientific basis of using the rat model is confounded by the fact that rats and humans show different cellular responses to inhaled particles as demonstrated by bronchoalveolar lavage (BAL) studies in both species. Conclusion Classifying all GBS as carcinogenic to humans based on rat inhalation studies in which lung overload leads to chronic inflammation and cancer is inappropriate. Studies of workers, who have been exposed to relevant levels of dust, have not indicated an increase in lung cancer risk. Using the methods proposed by the MAK, we were unable to reproduce the OEL for GBS recommended by the Commission, but identified substantial errors in the models. Considerable shortcomings in the use of lung surface area, clearance rates, deposition fractions; as well as using the mass and volumetric metrics as opposed to the particle surface area metric limit the scientific reliability of the proposed GBS OEL and carcinogen classification.International Carbon Black Associatio
    corecore