177 research outputs found
Music-evoked incidental happiness modulates probability weighting during risky lottery choices
We often make decisions with uncertain consequences. The outcomes of the choices we make are usually not perfectly predictable but probabilistic, and the probabilities can be known or unknown. Probability judgments, i.e., the assessment of unknown probabilities, can be influenced by evoked emotional states. This suggests that also the weighting of known probabilities in decision making under risk might be influenced by incidental emotions, i.e., emotions unrelated to the judgments and decisions at issue. Probability weighting describes the transformation of probabilities into subjective decision weights for outcomes and is one of the central components of cumulative prospect theory (CPT) that determine risk attitudes. We hypothesized that music-evoked emotions would modulate risk attitudes in the gain domain and in particular probability weighting. Our experiment featured a within-subject design consisting of four conditions in separate sessions. In each condition, the 41 participants listened to a different kind of music-happy, sad, or no music, or sequences of random tones-and performed a repeated pairwise lottery choice task. We found that participants chose the riskier lotteries significantly more often in the "happy" than in the "sad" and "random tones" conditions. Via structural regressions based on CPT, we found that the observed changes in participants' choices can be attributed to changes in the elevation parameter of the probability weighting function: in the "happy" condition, participants showed significantly higher decision weights associated with the larger payoffs than in the "sad" and "random tones" conditions. Moreover, elevation correlated positively with self-reported music-evoked happiness. Thus, our experimental results provide evidence in favor of a causal effect of incidental happiness on risk attitudes that can be explained by changes in probability weighting
Human psyche as object of interdisciplinary exploration
The article contains a description and visual representation of the structure of the human psyche considered in the context of systematic studies. The disciplinary levels of study of the phenomenon of the human psyche are described in the article. The scientific concepts of special epistemological value are shown. The author's graphic images (schemes) are presented and illustrate the structure of the human psyche in the context of systematic studies. The ideal structure of the psyche consists of consciousness, personality and cognitive sphere; the material structure of the psyche includes a biological basis. The general system functions of the psyche and the functions of its individual elements are described. The article`s materials complement the existing scientific ideas about the psyche and its structure
Development of benchmark system for charging control investigation
To address the emerging threat of climate change, consumers must transition to sustainable transportation. The electrification of the transport sector through e-mobility poses new challenges and uncertainties for grid operators as shown in Figure 1. Without efficient prior measures, grid development problems will inevitably arise, causing a need for costly grid expansions. To ensure a technically and economically successful transition to electric vehicles, grid operators need modern, digital tools that enable the investigation of a variety of future scenarios. At present, these tools only exist in a simulation environment, where multiple assumptions are made to obtain feasible results. This poses a high risk, as operators must design and maintain distribution grids in advance and based on clear-cut scenarios
Education and training needs, methods, and tools
The importance of education and training in the domain of power and energy systems targeting the topics of cyber-physical energy systems/smart grids is discussed in this chapter. State-of-the art laboratory-based and simulation-based tools are presented, aiming to address the new educational needs
Laboratory coupling approach
This chapter deals with the coupling of smart grid laboratories for joint experiments. Therefore, various possibilities are outlined and a reference implementation is introduced. Finally, the vision of a distributed, virtual research infrastructure is presented
Feature integration in natural language concepts
Two experiments measured the joint influence of three key sets of semantic features on the frequency with which artifacts (Experiment 1) or plants and creatures (Experiment 2) were categorized in familiar categories. For artifacts, current function outweighed both originally intended function and current appearance. For biological kinds, appearance and behavior, an inner biological function, and appearance and behavior of offspring all had similarly strong effects on categorization. The data were analyzed to determine whether an independent cue model or an interactive model best accounted for how the effects of the three feature sets combined. Feature integration was found to be additive for artifacts but interactive for biological kinds. In keeping with this, membership in contrasting artifact categories tended to be superadditive, indicating overlapping categories, whereas for biological kinds, it was subadditive, indicating conceptual gaps between categories. It is argued that the results underline a key domain difference between artifact and biological concepts
Cyber-physical energy systems modeling, test specification, and co-simulation based testing
The gradual deployment of intelligent and coordinated devices in the electrical power system needs careful investigation of the interactions between the various domains involved. Especially due to the coupling between ICT and power systems a holistic approach for testing and validating is required. Taking existing (quasi-) standardised smart grid system and test specification methods as a starting point, we are developing a holistic testing and validation approach that allows a very flexible way of assessing the system level aspects by various types of experiments (including virtual, real, and mixed lab settings). This paper describes the formal holistic test case specification method and applies it to a particular co-simulation experimental setup. The various building blocks of such a simulation (i.e., FMI, mosaik, domain-specific simulation federates) are covered in more detail. The presented method addresses most modeling and specification challenges in cyber-physical energy systems and is extensible for future additions such as uncertainty quantification
- …