19 research outputs found

    Record high solar irradiance in Western Europe during first COVID-19 lockdown largely due to unusual weather

    Full text link
    Spring 2020 broke sunshine duration records across western Europe. The Netherlands recorded the highest surface irradiance since 1928, exceeding the previous extreme of 2011 by 13 %, and the diffuse fraction of the irradiance measured a record low percentage (38 %). The coinciding irradiance extreme and a reduction in anthropogenic pollution due to COVID-19 measures triggered the hypothesis that cleaner-than-usual air contributed to the record. Based on analyses of ground-based and satellite observations and experiments with a radiative transfer model, we estimate a 1.3 % (2.3 W m−2^{-2}) increase in surface irradiance with respect to the 2010-2019 mean due to a low median aerosol optical depth, and a 17.6 % (30.7 W m−2^{-2}) increase due to several exceptionally dry days and a very low cloud fraction overall. Our analyses show that the reduced aerosols and contrails due to the COVID-19 measures are far less important in the irradiance record than the dry and particularly cloud-free weather.Comment: 21 pages, 12 figures, submitted to Communications Earth and Environmen

    Assessing the potential and application of crowdsourced urban wind data

    No full text
    The use of crowdsourcing – obtaining large quantities of data through the Internet – has been of great value in urban meteorology. Crowdsourcing has been used to obtain urban air temperature, air pressure, and precipitation data from sources such as mobile phones or personal weather stations (PWSs), but so far wind data have not been researched. Urban wind behaviour is highly variable and challenging to measure, since observations strongly depend on the location and instrumental set-up. Crowdsourcing can provide a dense network of wind observations and may give insight into the spatial pattern of urban wind. In this study, we evaluate the skill of the popular “Netatmo” PWS anemometer against a reference for a rural and an urban site. Subsequently, we use crowdsourced wind speed observations from 60 PWSs in Amsterdam, the Netherlands, to analyse wind speed distributions of different Local Climate Zones (LCZs). The Netatmo PWS anemometer appears to systematically underestimate the wind speed, and episodes with rain or high relative humidity degrade the measurement quality. Therefore, we developed a quality assurance (QA) protocol to correct PWS measurements for these errors. The applied QA protocol strongly improves PWS data to a point where they can be used to infer the probability density distribution of wind speed of a city or neighbourhood. This density distribution consists of a combination of two Weibull distributions, rather than the typical single Weibull distribution used for rural wind speed observations. The limited capability of the Netatmo PWS anemometer to measure near-zero wind speed causes the QA protocol to perform poorly for periods with very low wind speeds. However, results for a year-long wind speed climatology of the wind speed are satisfactory, as well as for a shorter period with higher wind speeds.</p

    Coupling between radiative flux divergence and turbulence near the surface

    No full text
    Near-surface turbulent flux and radiation divergence field observations are analysed over a grass-covered surface located at the Wageningen observatory, the Netherlands. Net radiative flux divergence appears to be a large component of the energy budget near the surface, accounting for a cooling rate of several tens of degrees per day. Long-wave radiation divergence dominates this radiation divergence flux. We show here that long-wave flux divergence near the surface is strongly coupled to sensible heat flux, except in high relative humidity (>90%) and foggy conditions. The net long-wave radiative flux divergence exhibits a sharp gradient within the first 20 m above the surface. This flux divergence is itself strongly coupled to sensible heat flux through adjustments in surface-layer profiles. Nonetheless, no systematic effect of radiation is witnessed on the turbulent temperature spectrum so that the main effect of near-surface radiation is on the mean heat budget. As typical flux-gradient relationships are derived based on observations taken in the near-surface boundary-layer region where sharp long-wave divergence is present, we suspect that those relationships implicitly represent some of the long-wave divergence term. A modification of Monin–Obukhov Similarity Theory to include the effect of radiative divergence is proposed and discussed. This calls for independent measurements of turbulent fluxes and radiative flux divergence near the surface to re-derive turbulent flux-gradient relationships independently of radiative effects.</p

    The Potential of a Smartphone as an Urban Weather Station—An Exploratory Analysis

    Get PDF
    The ongoing urbanization requires enhanced understanding of the local meteorological and climatological conditions within the urban environment for multiple applications, concerning energy demand, human health, and spatial planning. Identifying areas with harmful meteorological conditions enables citizens and local authorities to take actions to optimize quality of life for urban dwellers. At the moment cities have (in general) limited networks of meteorological monitoring stations. To overcome this lack of observations, theuse of non-traditional data sources is rapidly increasing. However, the use of such data sources without enough prior verification has become a controversial topic in the scientific community. This study aims to verify and assess one of the main non-traditional data sources, i.e. smartphones. The goal is to research the potential of smartphones (using the Samsung Galaxy S4 as an example phone model) to correctly sense air temperature, relative humidity, and solar radiation, and to determine to what extent environmental conditions negatively affect their performance. The smartphone readings were evaluated against observations from reference instrumentation at a weather station and a mobile measurement platform. We test the response time of the smartphone thermometer and hygrometer, and the light sensor’s cosine response. In a lab setting, we find that a smartphone can provide reliable temperature information when it is not exposed to direct solar radiation. The smartphone’s hygrometer performs better at low relative humidity levels while it can over-saturate at higher levels. The light sensor records show substantial correlation with global radiation observations, and short response times. Measurements along an urban transect of 10 km show the smartphone’s ability to react to fast changes of temperature in the field, both in time and space. However, a bias correction (dependent on wind speed and radiation) is required to represent the reference temperature. Finally we show that after such a bias correction, a smartphone record can successfully capturespatial variability over a transect as well

    Measuring low-altitude winds with a hot-air balloon and their validation with Cabauw tower observations

    No full text
    A field experiment with a hot-air balloon was conducted in the vicinity of the meteorological observatory of Cabauw in The Netherlands. Recreational hot-air balloon flights contain useful wind information in the atmospheric boundary layer (ABL). On a yearly basis between 8000 and 9000 flights are taking place in The Netherlands, mainly during the morning and evening transition. An application (app) for smartphones has been developed to collect location data. We report about a feasibility study of a hot-air balloon experiment where we investigated the accuracy of the smartphone’s Global Navigation Satellite System (GNSS) receiver using an accurate geodetic GNSS receiver as a reference. Further, we study the dynamic response of the hot-air balloon on variations in the wind by measuring the relative wind with a sonic anemometer, which is mounted below the gondola. The GNSS comparison reveals that smartphones equipped with a GNSS chip have in the horizontal plane an absolute position error standard deviation of 5 m, but their relative position error standard deviation is smaller. Therefore, the horizontal speeds, which are based on relative positions and a time step of 1 s, have standard deviations of σu = 0.8 m s-1 and σv = 0.6 m s-1. The standard deviation in altitude is 12 m. We have validated the hot-air balloon derived wind data with observations from the Cabauw tower and the results are encouraging. We have studied the dynamics of a hot-air balloon. An empirical value of the response length has been found which accounts for the balloon’s inertia after a changing wind, and which compared favorable with the theoretical derived value. We have found a small but systematic movement of the hot-air balloon relative to the surrounding air. The model for the balloon dynamics has been refined to account for this so-called inertial drift

    Measuring low-altitude winds with a hot-air balloon and their validation with Cabauw tower observations

    No full text
    A field experiment with a hot-air balloon was conducted in the vicinity of the meteorological observatory of Cabauw in The Netherlands. Recreational hot-air balloon flights contain useful wind information in the atmospheric boundary layer (ABL). On a yearly basis between 8000 and 9000 flights are taking place in The Netherlands, mainly during the morning and evening transition. An application (app) for smartphones has been developed to collect location data. We report about a feasibility study of a hot-air balloon experiment where we investigated the accuracy of the smartphone’s Global Navigation Satellite System (GNSS) receiver using an accurate geodetic GNSS receiver as a reference. Further, we study the dynamic response of the hot-air balloon on variations in the wind by measuring the relative wind with a sonic anemometer, which is mounted below the gondola. The GNSS comparison reveals that smartphones equipped with a GNSS chip have in the horizontal plane an absolute position error standard deviation of 5 m, but their relative position error standard deviation is smaller. Therefore, the horizontal speeds, which are based on relative positions and a time step of 1 s, have standard deviations of σu = 0.8 m s-1 and σv = 0.6 m s-1. The standard deviation in altitude is 12 m. We have validated the hot-air balloon derived wind data with observations from the Cabauw tower and the results are encouraging. We have studied the dynamics of a hot-air balloon. An empirical value of the response length has been found which accounts for the balloon’s inertia after a changing wind, and which compared favorable with the theoretical derived value. We have found a small but systematic movement of the hot-air balloon relative to the surrounding air. The model for the balloon dynamics has been refined to account for this so-called inertial drift.</p
    corecore