
The Potential of a Smartphone as an
Urban Weather Station—An
Exploratory Analysis
Aly Noyola Cabrera1, Arjan Droste1,2*, Bert G. Heusinkveld1 and Gert-Jan Steeneveld1

1Meteorology and Air Quality Section, Wageningen University, Wageningen, Netherlands, 2Hydrology and Quantitative Water
Management Group, Wageningen University, Wageningen, Netherlands

The ongoing urbanization requires enhanced understanding of the local meteorological
and climatological conditions within the urban environment for multiple applications,
concerning energy demand, human health, and spatial planning. Identifying areas with
harmful meteorological conditions enables citizens and local authorities to take actions to
optimize quality of life for urban dwellers. At the moment cities have (in general) limited
networks of meteorological monitoring stations. To overcome this lack of observations, the
use of non-traditional data sources is rapidly increasing. However, the use of such data
sources without enough prior verification has become a controversial topic in the scientific
community. This study aims to verify and assess one of the main non-traditional data
sources, i.e. smartphones. The goal is to research the potential of smartphones (using the
Samsung Galaxy S4 as an example phone model) to correctly sense air temperature,
relative humidity, and solar radiation, and to determine to what extent environmental
conditions negatively affect their performance. The smartphone readings were evaluated
against observations from reference instrumentation at a weather station and a mobile
measurement platform. We test the response time of the smartphone thermometer and
hygrometer, and the light sensor’s cosine response. In a lab setting, we find that a
smartphone can provide reliable temperature information when it is not exposed to direct
solar radiation. The smartphone’s hygrometer performs better at low relative humidity
levels while it can over-saturate at higher levels. The light sensor records show substantial
correlation with global radiation observations, and short response times. Measurements
along an urban transect of 10 km show the smartphone’s ability to react to fast changes of
temperature in the field, both in time and space. However, a bias correction (dependent on
wind speed and radiation) is required to represent the reference temperature. Finally we
show that after such a bias correction, a smartphone record can successfully capture
spatial variability over a transect as well.
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1 INTRODUCTION

Urban meteorology has been studied for nearly 200 years,
including the “Urban Effects’” on temperature (Oke, 1982;
Arnfield, 2003) and humidity (Hage, 1975). Howard (1833)
was the first to show that air temperature is generally higher
within a city (∼ 2°C higher) compared to its surroundings, known
as the urban heat island (UHI). The intensity of the UHI and
other “Urban Effects” depend largely on local climate,
surrounding geography, extent of urban environment, urban
geometry, type and quantity of anthropogenic emissions
(Rydin et al., 2012; Oke et al., 2017) and population density
(e.g., Steeneveld et al. (2011); Shi et al. (2019); Li et al. (2020)).
Anthropogenic heat production is another key concept in urban
meteorology, defined as the heat flux generated by vehicular
emissions, heating and cooling of buildings, industrial
processing Sailor (2011) and metabolic heat release by people
(Santamouris and Kolokotsa, 2016).

The impacts of the UHI on society are diverse and
interdependent, ranging from negative effects on human
health to increased energy consumption. During warm spells
the UHI can intensify health problems like heat strokes, and
dehydration: especially to those with diabetes (Kovats and
Bickler, 2012). Increased exposure to high temperatures shows
an increment in morbidity and mortality rates (Höppe, 2002;
Laaidi et al., 2006; Tertre et al., 2006; Baccini et al., 2008;
Gasparrini et al., 2015). The IPCC (2014) states that by the
end of the 21st century, heat-waves might double their
frequency (in the worst case scenario RCP8.5), which will
strongly impact the urban environment.

The urban microclimate also influences energy demand
related to heating and cooling of buildings (Allegrini et al.,
2012). This rising energy demand potentially increases both
anthropogenic heat production and greenhouse gas emissions,
creating a positive feedback loop. Several studies have found high
correlations between temperature and energy demand (Keirstead
and Sivakumar, 2012; Fazeli et al., 2016). These findings are
already being considered by the urban design community
(Svensson and Eliasson, 2002; Pijpers-van Esch, 2015; Klemm
et al., 2017) whilst some governmental agencies are working on
ways to minimize the negative effects of the UHI. All the
mentioned problems can be reduced or even mitigated by
early warning systems together with the identification of the
most susceptible areas within a city.

The understanding of urban meteorology is of paramount
importance as illustrated above. Gaining a better understanding
of urban meteorological phenomena will allow meteorological
institutes to develop better and faster weather forecasting systems,
which consequently will facilitate timely and precise warning
mechanisms to prevent adverse health problems and casualties.
Many countries already implemented Heat Health Warning
Systems, which have been promoted by the World Health
Organization and the World Meteorological Organization.
However, these warning systems are commonly based on
simplified thermal assessment procedures. More detailed
forecasting methods could offer more precise warnings in the
near future (MacLeod et al., 2016; Di Napoli et al., 2020). A higher

spatial density of these forecasting systems is necessary to
determine local effects of urban meteorology phenomena
including the UHI (Rydin et al., 2012; Ronda et al., 2017).
Even though there are some networks of professional in-situ
meteorological stations in several cities around the world, this is
still not enough to research UHI at a finer scale.

To overcome the lack of spatiotemporal availability of
meteorological observations in cities, crowdsourcing and
citizen science projects might offer an alternative data source
Meier et al. (2017); Chapman et al. (2017); Nipen et al. (2019);
Masson et al. (2020); Cheval et al. (2020); Bárdossy et al. (2020).
Muller et al. (2015) define crowdsourcing as: “obtaining data or
information by enlisting the services of a potentially large number
of people and/or sensors, generally transmitted via Internet”.
Chapman et al. (2017) discuss whether using crowdsourcing
weather observations is part of a paradigm shift in
observational techniques in the atmospheric sciences. They
conclude crowdsourcing has potentially far-reaching
consequences for the way in which measurements are
collected and used in the field. A large amount of data is now
being obtained from such sources, and the quantity is
substantially increasing Krennert et al. (2018); Uteuov et al.
(2019). Zhu et al. (2020) summarized the crowdsourcing
efforts at meteorological and hydrological services and
categorized the use of crowdsourced data in relationship
discovery, knowledge generalization and systemized service.
Nazarian et al. (2021) provide a thorough showcase of the use
of wearable devices (smartphones, smartwatches etc.,) to study
biometeorology and (urban) heat exposure. Such devices are
typically worn close to the skin, making them excellent choices
for heat stress studies. The potential of using cars and other
vehicles as sensor platforms has been acknowledged for a time
now (Mahoney and O’Sullivan, 2013; Abdelhamid et al., 2014),
and though the techniques are still being developed, recent results
seem promising for e.g., improving precipitation forecasts based
on windshield wiper data from cars (Siems-Anderson et al.,
2020).

Nowadays, many people around the world carry smartphones,
which are potential data acquisition devices. Several projects have
been developed to take advantage of many smartphone features
and sensors: among others, Madaus and Mass (2017) used
smartphone pressure records harvested via crowdsourcing to
assimilate in numerical weather prediction models to enhance
the forecast of severe weather events. Overeem et al. (2013) used
smartphone battery temperature records taken in eight different
metropoles across the globe to estimate the air temperatures on a
daily-mean and city-wide scale. Thereto they developed a linear
heat-transfer model that accounts for heat conduction between
the smartphone to the human body on one hand and to the
atmosphere on the other hand. With about 800 smartphones
records per day, they were able to successfully estimate air
temperatures. Using São Paulo as testbed, Droste et al. (2017)
refined this method towards smaller (hourly) scales and showed
that this method also allows for estimating differences in the UHI
effect between neighborhoods. A lab-test to refine this technique
was performed by He et al. (2020), which reduced the
temperature bias to around 1°C. In addition, de Vos et al.
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(2020) show the potential of the combined crowdsourcing of
temperature, humidity, rainfall and radiation illustrated for
Amsterdam (the Netherlands), using among others 3.14
million smartphone records collected over just 1 month. Also,
Mandement and Caumont (2020) successfully applied low cost
personal weather stations to monitor the evolution of deep
convection.

Data from such unorthodox sources require a stringent quality-
control to ensure its usefulness, since the devices are typically not
built to measure the environment at high accuracy. Hamdi et al.
(2020) mention the need to identify the signal-to-noise ratio in
crowdsourced observations. Machine learning is often applied as a
way to reduce this noise; e.g., Trivedi et al. (2021) successfully use
machine learning to use smartphone records for estimating indoor
temperatures, and Li et al. (2021) devised a bias-correction method
for smartphone pressure data based on a machine learning
approach. Napoly et al. (2018) and Meier et al. (2017) have
developed a quality-control procedure for personal weather
stations measuring temperature, and similar procedures have
been developed for rainfall (de Vos et al., 2019) and wind
observations (Droste et al., 2020).

Despite these research efforts, the accuracy and response times of
smartphone sensors are poorly known. Some disadvantages of using
smartphones asmeasurement equipment have been brought to light,
but those mostly relate to the phone and its usage as a whole, not the
sensors themselves. Examples are uncertainGPS location (indoors vs
outdoors); unknown elevation; or the influence of human behavior
on the readings. Knowledge about the performance of the most
useful sensors for urban meteorology inside smartphones and
identifying the variables that affect accuracy and reliability will
enhance the potential of this crowdsourcing data. This study
aims to investigate the accuracy and response times of
smartphone temperature, humidity and light sensors, during
different usage conditions. The goal of this work is to establish
what the potential of the smartphone as a measurement platform is,
in terms of response times and accuracy. To that end, we specifically
focus on direct smartphone sensor measurements, and not of
derived quantities using the battery temperature, for instance. We
also aim to identify potential error sources that influence
smartphone sensor readings. We make use of a specific type of
smartphone: the Samsung Galaxy S4, a relatively older model which
contains several environmental sensors, to answer the following
research questions:

1. How do smartphone readings of air temperature, relative
humidity and solar radiation compare (in accuracy and
response time) to reference sensors specifically designed for
meteorological observation? In particular, under weather
conditions that are favorable for high UHI, as well as for
different usage conditions (battery charging, intensive CPU
usage etc.,)

2. Which variables and environmental conditions affect
smartphone readings of ambient temperature and relative
humidity, and to what effect?

While we do use a specific type of smartphone, we expect the
type of error sources and typical response times to be illustrative

for not just the specific sensor types in the S4, but rather for any
smartphone used as a measurement platform. While values of
response times might change between sensor brands, the errors
and typical responses are expected to be more universal, related to
how a smartphone is built and used. This paper is organized as
follows: Section 2 presents our methodology and utilized
observations, and section 3 presents the results for the
temperature, humidity and light sensor. Section 4 discusses
our findings and conclusions are drawn in section 5.

2 METHODOLOGY AND DATA

2.1 Smartphone Records
Air temperature, relative humidity and light intensity readings
are obtained with a Samsung Galaxy S4 GT-I9515 smartphone
(running Android 5.0.1). This smartphone has been selected for
its wide global distribution, since more than 40 million devices
were sold. This device incorporates the SHTC11 digital humidity
and temperature sensor developed and manufactured by
Sensirion. Furthermore, the smartphone contains a CM3323E
light sensor, which is primarily used to sense RGB and white light
to automatically adjust brightness and color temperature of the
device screen. All sensor data is retrieved from the phone using
the Android application “AndroSensor v1.9.6.3”. The main set of
experiments was performed during September 2017 through to
March 2018. A second field experiment under summer
conditions was executed during a hot spell in June 2021.

2.2 Mobile Reference Observations
Smartphone temperature (Ts), relative humidity (RHs), and light
(Ls) are compared against in-situ measurements and (over a
trajectory) against instrumentation mounted on a custom
measurement-tricycle developed by Heusinkveld et al. (2010).
The micrometeorological observations on the tricycle consist of a
shielded thermometer-hygrometer (model CS215L, Campbell
Scientific, United States), an ultrasonic 2-D anemometer (Gill
WindSonic, Gill Instruments, United Kingdom) six
pyranometers (Hukseflux) and six pyrheliometers, and a GPS
system (Figure 1). In addition the wheel speed is recorded to
estimate the true wind speed by correcting the sonic anemometer
record with the wheel speed. Further details about the tricycle and
its use in urban climate research are available in Heusinkveld et al.
(2014) and Koopmans et al. (2020).

2.3 Reference Weather Station
The experiments took place in and around Wageningen (the
Netherlands) which is a mid-size town of about 3 × 3 km, and
with ∼ 39,000 inhabitants. The site is located in a temperate
climate [Cfb in the Köppen climate classification, Kottek et al.
(2006)]. The urban morphology of Wageningen consists of
typically two to three stories tall residential buildings.
Observations from the Veenkampen weather station2, run

1https://wikidevi.wi-cat.ru/Samsung_Galaxy_S4_(SHV-E300S)
2https://ruisdael-observatory.nl/veenkampen/
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by the Meteorology and Air Quality section of Wageningen
University, are used to evaluate the accuracy of Ts, RH and Ls
readings under diverse meteorological conditions. The
weather station is located to the west of Wageningen
(51.981°N, 5.622°E), and consists of a flat well-watered and
regularly mowed grass field over a 0.5 m clay soil on top of a
1.5 m peat soil layer. The site has a Stevenson screen to
measure temperature and humidity at 1.5 m level by a
Väisälä-HMP155 sensor, containing a heated humidity
sensor, and a PT100 temperature sensor. The measurement
accuracy amounts to 0.2 K for temperature and 2% for RH (for
10 < RH <100%).

2.4 Time Response Analysis
The first step in the research quantifies the response time of Ts,
RHs and Ls. Time response is defined as the amount of time it
takes to a sensor to respond to a rapid change of a variable, and
reach the new value. To quantify this response the calculation of a
time constant (τ) is needed. τ is the time for the system (sensor)
needed to reach 63.2% or 1—(1/e) of its final asymptotic value
(the expected value). To determine τ of the sensors, they have to
reach an equilibrium state and then get exposed to a step change.
The following series of experiments are designed to obtain (τ) for

Ts and RHs (Table 1 contains the overview of the different
experimental setups of this study):

1. To quantify the response time of Ts and RHs, the smartphone
records data in a room at a constant temperature and constant
relative humidity.

2. After reaching equilibrium the device is situated in a new place
with different but also stable levels.

3. The experiments to calculate the response time have been
designed in both directions (from warm to cold, from dry to
humid, and vice versa) and starting from different steady
states. The experiment has been repeated 12 times in each
direction.

For instance, the device is placed at room temperature/
humidity (∼18°C and 60% RH), and then the smartphone is
quickly placed into a freezer, which has a lower temperature and
higher RH (∼ −8°C and 75% respectively) until equilibrium is
reached. Precise details of starting and environmental
temperature and RH are provided in the Supplementary
Material. At all times the device is positioned on top of a
platform which only has 3 contact points to minimize heat
transfer. After some time, the equilibrium is reached, and the

FIGURE 1 | The measurement cargo tricycle (A) and the smartphone setup in the Stevenson screen at the Veenkampen weather field (B). The smartphone is
positioned horizontally with minimum contact points to prevent conduction.

TABLE 1 | Overview of the different experiments performed for this study.

Measuring variable Type of experiment Number of repetitions

1) Temperature response time from cold to warm Lab experiment 12
2) Temperature response time from warm to cold Lab experiment 12
3) Temperature response time from cold to warm with wind influence Lab experiment 6
4) Temperature response time from warm to cold with wind influence Lab experiment 4
5) Relative humidity response time from humid to dry Lab experiment 12
6) Relative humidity response time from dry to humid Lab experiment 12
7) Light response time from light to dark Lab experiment 2
8) Light response time from dark to light Lab experiment 2
9) Cosine response analysis of smartphone light sensor Lab experiment 12
10) Temperature comparison against reference instrumentation at meteorological station Field experiment . 5 sets during winter 2017–2018

. 2 sets during summer 2021
11) Relativehumidity comparisonagainst reference instrumentationatmeteorological station Field experiment . 5 sets during winter 2017–2018

. 2 sets during summer 2021
12) Temperature, relative humidity, and light Urban transect experiment 12 routes at different times of the day during autumn 2017
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device is put outside the freezer until a new steady state is
attained. In order to include more step-changes from different
temperature levels, the device in some cases is also positioned
below an incandescent light, which generates stable high
temperatures (around 40°C). The selected sampling rate for
these tests is 1 s with a resolution of 0.01°C and 0.01% RH.
Furthermore, it is also important to understand the effect of wind
on Ts and RHs response times. Hence, the previously explained
experiment has been repeated while varying the wind speed. For
these cases, a fan is used to generate wind, measured by a cup
anemometer. This experiment variation has been repeated
10 times.

The response time of the light sensor is not specified by the
manufacturer, but usually this type of sensor responds fast to a
step change. To quantify τ of Ls:

1. The device is located in a dark room.
2. The light sensor is suddenly exposed to an intense

concentrated light source, using a lamp.
3. The procedure is performed in the opposite way (from light to

darkness).

Considering that a light sensor tends to have a relatively small
τ, 10 milliseconds is the selected sample rate, which is the fastest
rate available by the AndroSensor application.

2.5 Measurement Accuracy
Measurement accuracy of the smartphone is tested using the
Veenkampen weather field reference instruments. Four different
experiments are designed and executed to test the sensor accuracy
under various conditions:

1. The smartphone is placed at the weather field, inside a
Stevenson screen (Figure 1) next to the reference
hygrometer and thermometer, at 1.5 m height. Data is
recorded for 5 blocks of 12 daytime hours.

2. The smartphone is placed outside the Stevenson screen,
around 0.5 m away at 1.3 m height.

3. The smartphone battery is being charged and smartphone’s
CPU is under heavy workload. The experiment runs for
60 min and is executed under stable and constant room
temperature.

4. Ts and RHs are compared against instrumentation installed in
the tricycle (described in section 2 and Figure 1). The
objective of this comparison is to analyze the accuracy of
the smartphone readings across an urban transect, and to
evaluate the characteristics and understand the general
features of the data.

Data from the experiment outside the Stevenson screen, and
the experiments mounting the smartphone on the tricycle are
used to assess the accuracy of Ls. In addition, we test the response
of the light sensor to radiation incident at an angle with respect to
the surface. The sensor’s response to radiation incident at
different angles is a parameter widely used to understand its
capacity and overall quality. The response of such sensors to
radiation incident at an angle θ, with respect to the horizontal

plane is called cosine response. We calculate the cosine response
by directing a light beam towards the sensor from different
angles, always maintaining the same distance and light
intensity. The ideal cosine response is proportional to θ, and
any deviation from this ideal value causes underestimations
(Martínez et al., 2009).

3 RESULTS

This section presents the results of the analyses for the sensor
response time, accuracy and bias identification of the
temperature, relative humidity and light sensors in a lab
environment (in sections 3.1–3.3, respectively). Subsequently,
the spatial/temporal performance of the smartphone sensors will
be compared against reference instruments, as well as a bias-
correction procedure following this verification (section 3.4).

3.1 Temperature Sensor
3.1.1 Response Time Analysis
As previously described, τ equals the time required by the
thermometer to register 63.2% of a step change in air
temperature (WMO, 2014). According to the manufacturer3,
the SHTC1 sensor installed in the Samsung S4 has a τ
between 5 and 30 s. However, as shown in Supplementary
Table S1 and Supplementary Table S2, such values are
difficult to achieve because the sensor is enclosed inside the
device, and the ventilation is poor. The average τ estimated
for the negative step-change in temperature amounts to 188.25
and 161.76 s for a positive step-change, with a standard deviation
of 27.13 and 56.68 s, respectively (Supplementary Table S1 and
Figure 2). The WMO states that for routine meteorological
observations there is no advantage in using thermometers with
very small τ. Instead, they recommend the use of thermometers
with a τ of approximately 20 s (WMO, 2008; Burt and de Podesta,
2020). However, thermometers with large time constants can
introduce errors in cases where air temperature changes at a fast
rate (e.g., during urban transect measurements). Since τ is the
time required for the sensor to reach 63.2% of a step change, five
times τ is the time required to get a near full reading (99.3%).
Therefore, during an abrupt change in temperature the
smartphone might take around 15 min to get a correct reading
compared, where 1.6 min is recommended for conventional
meteorological observations with a thermometer.

The difference between the time responses can be explained
since a relatively warm smartphone in a cold environment will
induce turbulent convection which is an efficient transport
mechanism for heat. On the contrary, when a relatively small
cold smartphone is located in a warm environment, a stable layer
will form over the smartphone, and turbulent transport in stable
conditions is suppressed, which inhibits the heat exchange and as
such results in a longer response time. The temperature response
curve appears to behave like a second order system, with an

3https://www.mouser.com/datasheet/2/682/Sensirion_Humidity_Sensors_
SHTC1_Datasheet-1511754.pdf
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overshoot (peak) in the temperature measured as consequence of
the step change. However, after the overshoot, the response time
appears to return to equilibrium as a first order system instead of
having an oscillation effect.

The origin of the behavior previously described is difficult to
identify, the measurements were taken alongside a calibrated
Digital thermometer (GTH 175/Pt), and such behavior was not
present in the thermometer readings. It seems that Sensirion (the
sensor manufacturer) put in place a software algorithm which
calibrates the air temperature readings by using “information
from other areas of the device”, presumably battery temperature
readings. This is called “The Sensirion Compensation Engine”,
and according to them, the algorithm is specially calibrated for
the Samsung S4 smartphone4. The same posts suggests that the
post-processing algorithm helps to improve temperature
response time. So, perhaps this compensation algorithm
generates the measurement errors previously described. The
latter might happen since ambient air is also supplied to the
battery temperature sensor (due to wind exposure) warming it up
at a faster rate than the assumed by the compensation-algorithm,
therefore, generating the observed sudden increase in the sensed
air temperature. Without further details on the functioning of the
algorithm it is impossible to confirm this hypothesis. Such a
“black box” algorithm is likely present in most mobile devices,
where the manufacturers do not always detail how these
algorithms are set up. As such, they could be considered
inherent to such mobile devices which needs to be taken into
account when using these devices to gather environmental data.

All the lab experiments described above were executed with
airflow close to 0 ms−1. However, as stated by theWMO (2008), τ

depends on the airflow over the sensor, which required some
experiments to assess how wind affects τ. In theory, wind might
help to reduce response time, since it helps to refresh the sensor
with ambient air temperature and more efficiently dissipate heat.
A separate set of experiments (not shown here) simulated the
effect of low wind speeds (between 0.5 and 4 ms−1 generated by an
electric fan) on τ. The τ for the experiments with wind was
consistently higher than a wind-less environment. This could be
caused by condensation of water vapor on the smartphone when
moving into a warmer environment: this moisture requires
energy to be evaporated again (a latent heat flux). Since this
energy needs to be provided by the smartphone, this prolongs the
time before temperature equilibrium is reached. All the ten
experiments performed under these conditions exhibit the
same behavior.

3.1.2 Sensor Accuracy
The air temperature measurements from the smartphone Ts are
compared and validated against the air temperature readings
from the Veenkampen meteorological station (Tref). One set of
experiments was performed under relatively cold autumn and
winter conditions (afternoon temperatures around 10°C;
Figure 3) and another during a warm spell in summer
(afternoon T above 25°C; Figure 4). The smartphone was
placed inside the same Stevenson screen for 5 days, at the
same height (1.5 m) as the calibrated thermometer, as
described in section 2. The results show a cold bias for the
smartphone both for the autumn and summer experiments
(Figures 3,4, respectively). The mean error including day and
night measurements amounts to −2.0°C. The timeseries is very
similar to the reference, with the smartphone exhibiting a cold
bias, even during much hot conditions. Part of the summer
experiment also included a duplicate measurement with

FIGURE 2 |Observed temperature response for a positive (A) and negative (B) temperature exposure for one of the 12 experiments performed (see text). The time
axis represents time since start of the measurements (s). Dashed lines indicate the estimated response time (τ).

4https://www.sensirion.com/en/markets/sensor-solutions-for-smart-home-
applications/
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another smartphone of the same model, measuring at the same
location. Differences between these duplicate measurements were
not statistically significant (MAE of 0.1°C and RMSE of 0.13°C;
results not shown), which indicates that this bias is systematic and

not due to a single faulty sensor. Additionally, since the autumn
and summer experiments were 3.5 years apart yet find a nearly
identical bias, it suggests the sensors have not been subject to
degradation due to aging. We find that the distribution of the

FIGURE 3 | Time series of observed air temperature from the smartphone and reference weather station Veenkampen. During this experiment the smartphone is
located inside the Stevenson screen. The experiment was executed from January 27th 2018 10:00 UTC till January 28th 2018 10:00 UTC.

FIGURE 4 | Time series of observed air temperature from the smartphone and reference weather station Veenkampen during a follow-up experiment in June 2021.
During this experiment the smartphone is located inside the Stevenson screen. The experiment was executed from June 3rd 2021 08:00 UTC till June 4th 2021 06:
00 UTC.
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observed temperature between the smartphone and the
temperature sensor at Veenkampen meteorological station is
very similar (Figure 5). Ts and Tref correlate very well: results
show a strong positive linear relation with a Pearson correlation
coefficient of 0.99 with a p-value < 0.05. The mean error was
similar for the temperature range during the observations from
inside the Stevenson screen, pointing at a good performance for
sensitivity.

3.1.3 Temperature Readings Error Sources
Heat generated by the smartphone battery and electronics when it
is under heavy CPU/GPU workload has proven to be a major
source of error for temperature measurements, and it is a source
that is not directly related to external weather conditions. Ts can
easily give readings twice as warm as the actual air temperature:
one experiment resulted in Ts reading 35°C when the actual room
temperature was 15°C. For this particular experiment the
smartphone was placed directly over a textile padding for
60 min, it was covered by a cotton cloth (simulating being
inside a pocket), thus, hindering the heat exchange between
the smartphone and the atmosphere. Such conditions would
portray a common usage of the phone.

Even providing the best possible conditions for the
smartphone to dissipate the heat by itself (smartphone placed
over a platform with a negligible contact area), Ts was 20°C in
contrast with the 15°C room temperature, with a temperature
increase rate of 1°C per minute after the workload simulation
started (results not shown). In section 3.1.1 the mean response
time was calculated for both positive and negative step changes
(under lab conditions), but these values are not valid when Ts

increases due to internal heat generation since the temperature

changes are not fast enough to be considered step changes. For
comparison a pseudo response time is calculated. The pseudo
response time for the smartphone to cool down after heavy CPU/
GPU workload amounts to 27 min, which might be a relatively
long period for many meteorological applications, and is nearly
double the τ previously found. This experiment was performed
under conditions without wind, and thus with limited turbulent
exchange of heat between the smartphone and the air, which
explains the relatively long response time. In real-world
applications the phone might be subject to air flows, which
would make heat transfer much more efficient, as shown in
section 3.1.1.

For the case when the smartphone battery is charging, the
error proved difficult to characterize. During the charging, Ts

decreases in sudden jumps. The most viable explanation for this
behavior resides in the post-processing algorithm, which
apparently tries to compensate for the increase in temperature
caused by the battery being charged.

One of the main external sources of temperature measurement
errors (for conventional thermometers) is the incoming solar
radiation. Its effects become more prominent in cases where a
sensor is directly exposed to solar radiation without proper
ventilation. An effective ventilation system supplies a constant
flow of ambient air to the sensor, thus preventing overheating
issues. As shown in section 3.1.2, when the smartphone measures
temperature inside a properly built Stevenson screen,
measurement errors as consequence of global radiation (direct
+ diffuse solar radiation) are not relevant. However, during active
outdoor use, the smartphone will likely be exposed to direct
sunlight, hence it is necessary to quantify the relation between
solar radiation and temperature error. This research took place
mostly in winter; therefore, higher radiation values were
artificially created using a heat lamp. Figure 6 shows the
smartphone mean temperature bias as a combined function of
wind speed and global radiation. The values are obtained from
the experiments performed outside the Stevenson screen. The
higher the radiation levels are at low wind speed, the more the
device overheats, and the lack of ventilation prevents the ambient
air from outside to quickly reach the sensor, thereby,
increasing Ts.

Note that when the smartphone is exposed to more than
600 Wm−2 the wind speed appears to play a relatively larger role.
Lack of ventilation appears to worsen temperature
measurement errors at relatively high values of global
radiation, whereas at low levels of radiation it is less
dominant. During nighttime (global radiation ≤0 Wm−2) the
smartphone showed readings with an average of 4.2°C lower
than the reference value, this is a net difference of 2.1°C colder in
comparison with the smartphone inside the temperature screen.
This difference suggests that the smartphone outside the
Stevenson screen emits net more long-wave radiation which
is not corrected for. The glass of which a smartphone has been
composed of has a surface emissivity typically between 0.92 and
0.94, which is substantially smaller than the emissivity of the
atmosphere. This process of rapid cooling is similar to the
relatively rapid cooling of a car’s windshield on a clear
calm night.

FIGURE 5 | Box-plot comparing 1.5 m height air temperature
observations from the smartphone and Veenkampen meteorology station
thermometer (for the autumn and winter experiments). Smartphone is placed
in the same Stevenson screen. Each box ranges from 25th to 75th

percentile (interquartile range IQR), median is denoted as the horizontal line
inside the box, arithmetic mean is represented by the cross, whiskers have a
maximum length of 1.5 * IQR.
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3.2 Relative Humidity Sensor
3.2.1Response Time Analysis
For the capacitive relative humidity sensor found in the Samsung
S4, Sensirion specifies that τ � 8 s5, though this value corresponds
to a stand-alone sensor at 25°C and an airflow of 1 ms−1. Twelve
experiments were performed: the first ten experiments to
calculate τ for a positive step-change involved an actual
change of humidity in the air, while the last two, represent τ
where the humidity remains constant but temperature decreases.
The experiments show a much slower response time compared to
manufacturer specification. When a change in humidity occurs,

the average τ amounts to 13.4 min and when a change in relative
humidity is only driven by a temperature change, τ is faster, with
4.7 min (details in Supplementary Table S3 and Supplementary
Table S4). In the case of the negative step-change experiments
(Figure 7), the results show an interesting phenomenon. When
the smartphone is exposed from a cold and humid
environment (inside the freezer) to a warmer and drier one
(room temperature), the water vapor present in the
surrounding air condenses outside and inside the
smartphone. The condensation generates an abrupt increase
in relative humidity, producing measurement errors and
delaying the real response time of the sensor (see peak in
Figure 7). Note that the abrupt initial decrease in RHs is an
expected behavior: the hygrometer is reacting to the sudden
change in temperature. In two cases, τ of RHs surpassed

FIGURE 6 | Radiation bias of smartphone temperature readings Ts as a function of wind speed and global radiation.

FIGURE 7 |Negative step-change of relative humidity. The time axis represents time since the start of the measurements (s). The peak present around 1,300 s is a
result of a measurement error generated by the condensation of water vapor present in the air surrounding the smartphone, this effect prolongs the response time of the
sensor to a step-change in relative humidity.

5https://www.mouser.com/datasheet/2/682/Sensirion_Humidity_Sensors_
SHTC1_Datasheet-1511754.pdf
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30 min. However, without condensation occurring in the
experiment, the average response time amounts to 2.04 min
(Supplementary Table 3). WMO (2008) states that ideal τ for
relative humidity sensors is between 1 and 50 s.

3.2.2 Measurement Accuracy
Relative humidity measurements from the smartphone (RHs) are
compared against reference observations from the Veenkampen
meteorological station (RHref). The results show a mean positive
bias of 7.42% RHwhen taking all the measurements into account.
However, as shown in Figure 8, generally when RHref is greater
than 90%, RHs reaches 100% RH, suggesting an oversaturation of
the sensor. For this reason, a more accurate bias is calculated
where RHs values of 100% are excluded, resulting in a mean bias
of +8.16% RH. The Pearson correlation coefficient between RHs

and RHref is 0.69, suggesting a moderate positive linear relation
(p < 0.05). Possible causes of the errors are discussed in the
following section.

3.2.3 Relative Humidity Error Sources
To assess relative humidity measurements and quantify biases
is a challenging task for many reasons. First, the sensor in the
smartphone is a relatively inexpensive electrical capacitive
hygrometer, which is not individually calibrated (the
phones are mass-produced). Thus, the calibration process is
not perfect, and the sensor might have significant systematic
biases. For the case of the SHTC1 smartphone sensor, the
accuracy is within ±4.5% RH (where the % unit is in RH units
and not a percentage of the measurement) for RH between 20
and 80% at 25°C, and the accuracy might decrease to ±7.5%
with RH < 20% and RH > 80%. Since the accuracy of relative
humidity also depends on air temperature, typical RH

accuracy values are evaluated at different temperatures and
RH levels (note that the maximal tolerance accuracy values can
still be ±3% RH). Sensirion6 explicitly states that the long-time
exposure to conditions >80% may offset the RH signal, causing
the sensor to recalibrate itself. Given the long duration of the
experiments at fairly high humidity values, it is possible that
this happened during the oversaturation periods, which offset
the sensor. Given the errors present in the air temperature
readings (section 3.1.3), the smartphone RH readings will
have an additional level of uncertainty caused by the
smartphone temperature sensor.

3.3 Light Sensor
The light sensor in the smartphone is designed to measure light
intensity (lux), rather than radiation. Nevertheless, obtained lux
values correlate well with the pyranometer recording global
radiation at the weather field (Pearson correlation values
above 0.9 for all the field experiments).

The time response analysis gave a near-instant response to the
change in light level: as fast or faster than the measurement
frequency (10 ms). This fast response can be useful in certain
weather conditions, e.g. rapid change in cloud cover. This might
occur in the reported observations (Figure 9) just after 900 s,
though cloud-cover observations are not available at the weather
station. In addition, the fast response is also useful for traverse
observations in streets in order to accurately trace sunlit shaded
locations in street canyons.

FIGURE 8 |Observed RH by the smartphone sensor (red line) and the reference observations (blue line) for a 24 h period at the Veenkampenweather station. In this
experiment, the smartphone was located inside the Stevenson screen for January 27th 2018 10:00 UTC—January 28th 2018 10:00 UTC.

6https://www.mouser.com/datasheet/2/682/Sensirion_Humidity_Sensors_
SHTC1_Datasheet-1511754.pdf
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Figure 10 shows the sensor cosine response to the incident
light from angles −90° to 90°. The experiment to calculate the
cosine response of the light sensor was replicated more than 10
times, with similar results. For comparison, a second class
pyranometer (like the Hukseflux LP02 installed on the
tricycle) has a mean ± 2% deviation from the optimal cosine
response for all zenith angles from −90 to 90°, while the

smartphone light sensor mean deviation is −33.87%. Only
between −45 and 45° the smartphone light sensor performs
within the accepted range of ±5% deviation of the ideal cosine
response of standard pyranometers. This has consequences for
use of actual smartphone data, since those will likely not be angled
towards the Sun, which will reduce their accuracy at estimating
direct incoming radiation.

FIGURE 9 |Observed light sensor signal from Samsung S4 (red line) and observed global radiation at the surface at the Veenkampen reference station (blue line) for
a period of nearly three quarters of an hour. Measurements taken on October 19th 2017.

FIGURE 10 | Observed cosine response of the light sensor in the smartphone Samsung S4 as function of zenith angle (red line) and ideal cosine response (blue
line).
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3.4 Spatial Analysis
In this section air temperature from the smartphone is compared
against the instrumentation on the tricycle. One-hour data of
temperature, relative humidity, wind speed and global radiation
retrieved by instrumentation installed on the tricycle was
compared against the one retrieved by Veenkampen
meteorological station at the same day as the transect
measurements from Figures 11,12 (calibration results not
shown). The comparison was made to double-check the
data quality retrieved by the bicycle instrumentation and
thus, being able to further use it for assessment and
comparison against the smartphone data. Data from the

tricycle shows a mean temperature bias of 0.02°C with
respect to the Veenkampen weather station. However, for
cases when global radiation is greater than 300 Wm−2,
temperature shows a stronger positive bias of 0.43°C. All
measurements were recorded with 1.4 ms−1 average wind
speed at 2 m height. For relative humidity, the results (not
shown) display a mean error of −3.4 %RH. For wind speed, no
fully direct comparison is possible since the wind at the
Veenkampen weather station and on the tricycle are
measured at different heights, 1.5 and 2 m respectively.
Nonetheless, the observations are between the expected
values for a 0.5 m height difference between them, with the

FIGURE 11 | Smartphone measurements uncorrected for temperature bias and reference tricycle measurements. Measurements took place across a predefined
path on October 17th 2017, in the evening, to ensure low radiation bias. The time axis represents the start since the experiment: the cut-off part was setting up the
measurement devices.

FIGURE 12 | Bias corrected transect measurements of air temperature, measured from smartphone observations (A) and the measurement tricycle (B). Data was
measured on the same instance as Figure 11, and has been bias corrected before plotting.
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sonic anemometer averaging a mean error of −0.3 ms−1.
Finally, when comparing global radiation, the pyranometer
on the tricycle showed a mean error of −3.8 Wm−2, which
meets the manufacturer specifications. This confirms that the
tricycle instrumentation serves as a proper reference to
compare the smartphone data against over a transect.

For transect measurements made during the day (results not
shown), the downwelling solar radiation impacts the device
directly, causing large occasional errors when the phone is
exposed to the Sun. Spikes in Ts are preceded by higher levels
of downwelling radiation, resulting in an overall correlation
coefficient of 0.69. On the other hand, when the experiment is
executed during the evening (Figure 11, the air temperature
readings from smartphone and the ones from the tricycle
instrumentation correlate better with one another, with a total
correlation coefficient of 0.86, though the absolute difference is
substantial still (3 K).

In scenarios with low levels of solar radiation, the bias
correction to the smartphone temperature readings is a
straightforward process, using linear regression analysis.
However, the preconditions are the following:

1. Smartphone is not close to an external heat source.
2. The phone is not being charged.
3. The phone is not under heavy CPU/GPU workload (app

usage).

The time series in Figure 11 has also been detrended,
assuming an overall linear change in temperature between
start and finish, to identify solely spatial differences in air
temperature. When this data is plotted across the map
(Figure 12), it is possible to see similar temperature patterns
with both instruments (smartphone and calibrated thermometer
on tricycle). This shows that the smartphone, even with its
delayed reaction time, is capable of making meteorological
measurements that vary on the urban scale. The various open
and sunlit areas around the center of Wageningen that receive
more solar radiation are well-represented by the smartphone
data, as are some of the more shaded cooler locations. While a
detrending and correction procedure are necessary, this does
show that smartphone temperature data has the potential to
represent even small-scale variability in time and space, even
though the fairly large τ values for Ts would have initially
suggested otherwise (section 3.1.1).

4 DISCUSSION

This section addresses the significance of this research within the
context of urban meteorology, and approaches the opportunities
crowdsourcing from smartphones may offer for urban
meteorology.

The results of this exploratory research topic show the
capabilities of a smartphone (illustrated by use of a Samsung
S4) as a meteorological data acquisition device, although
smartphones have not been designed nor manufactured to be
accurate at measuring meteorological variables. Nonetheless,

many smartphone types able to sense air temperature, light
intensity and some devices even measure ambient humidity.
Even though a single smartphone cannot record accurate
measurements under all environmental conditions, the true
potential is the large amount of data already available,
together with the wide spatial and temporal distribution of the
measurements. The two keys to fully take advantage of the
amount of data already available is: firstly, to understand
under which scenarios/circumstances the measurements are
useful, and secondly, to identify, develop and test procedures
to improve the data quality as in Meier et al. (2017), and Droste
et al. (2020).

We find the outdoor smartphone temperature and relative
humidity readings relate very well during periods of relatively
small levels of downwelling solar radiation. This might be
particularly useful to detect the UHI, which normally peaks
several hours after sunset. Still, the device usage has to meet
the right conditions to be useful and reliable for meteorological
data acquisition. For instance, the device battery should not be
charging, the smartphone CPU is not heavily used, and the device
should not be influenced by the human body temperature. With
information from about the battery status, light and/or proximity
sensor, the right conditions can be selected for our analysis.
Computing power increases rapidly and it might already be
enough to evaluate big datasets and to identify reliable data in
them. Since the thermometer and hygrometer sensor are
encapsulated inside the smartphone, the response times exceed
the WMO recommendations. WMO requires 20 s while our
analysis finds a response time of around 120 s (though the RH
sensor can oversaturate and take >20 minutes to get to
equilibrium). In addition we would like to remark that we
tested only the responses of a single smartphone. Of course,
repeated experiments with multiple phones of the same brand
and type would have resulted in more robust statistics, though the
general source of errors and time responses will likely be
the same.

Moreover, it is illustrative to compare the estimated time
constants for our experiment with the earlier estimates as in
Droste et al. (2017). They estimated the cooling rate of a
smartphone with power P which is surrounded with
clothing of heat conductivity κ and heat capacity mc. In
their approach the typical time scale at which the
temperature responds to a temperature change is estimated
by κ/(mc), and amounts to 0.8 W/m/K/(0.13 kg * 600 J/kg/K) �
98 s. This value is slightly smaller, though still relatively close
to our value of 170 s as reported in Supplementary Table 1,
despite their estimate is an a priori estimate based on material
properties. For comparison we report that Cao et al. (2020)
found a time constant of 9.7 s for a basic temperature sensor
built on IoT technology. Their study calculated this time
constant during their transect measurements: we see in our
Figures 11,12 that the time constant over the urban transect
appears lower than in the lab, and more similar to Cao et al.
(2020)’s findings.

Considering that our research found a typical temperature
bias of about 2 K, Niforatos et al. (2017) studied the potential
of participatory sensing for weather estimation, by developing

Frontiers in Environmental Science | www.frontiersin.org August 2021 | Volume 9 | Article 67393713

Cabrera et al. Smartphone as Urban Weather Station

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


the crowdsourcing weather app Atmos that periodically
samples smartphones’ weather-related sensors. Their
approach also allows users to enter their own estimates of
both current weather conditions. Using 32 months of
observations they found a temperature bias of 2.7°C based
on the pure sensor data, which is close to our findings. Their
bias dropped to 1.9°C when manual user input was allowed as
well. Trivedi et al. (2021) show that this bias could be reduced
by using machine learning and multiple phone records (they
report 0.5°F).

Also, it is interesting to address the temperature differences in
smartphones in case different sensors are employed. Gavin and
Sidhu (2015) report on a lab study that compares two
temperature sensor types to measure ambient temperatures
with a smartphone. Both sensors were placed in a sheltered
location and were left to take a series of readings at regular
intervals. No significant difference between the readings taken
from a smartphone temperature sensor and a established sensor.
Their histogram shows that differences between the two sensors
do not exceed 0.04 K, which is accurate for our application.

We have been positively surprised about the performance of
the light sensor, which illustrates its enormous potential for
smartphones to be used as “economic pyranometers”. Initially,
more work is needed to be able to distinguish the light source
detected by the light sensor (detect if solar light or artificial light).
However, for specific, well defined experiments (during fast
changes in cloud cover, or for fog observation/detection) the
light sensor from smartphones is a good choice for research.

However, despite all the experiments performed and the data
analyzed, the results represent the behavior of a single
smartphone model. The duplicate measurement confirmed
that other devices of the same brand and model behave in
similar manner, but the use of other smartphones is
recommended to check and increase the confidence of the
findings presented in this research. The Samsung Galaxy S4 is
used in this research, since there are already available datasets
containing data from this smartphone, however it may be
necessary to also work on more updated models. An earlier
study by Breda et al. (2019) estimates indoor air temperatures
by smartphones and found an error of 1.4%. They also estimate
the time responses for the smartphone in modes of screen, CPU,
network and charging activities. Most interesting for our
application is their observed response time of about 1,000 s in
a phase when the smartphone is cooling. Although this is slightly
higher than in our case, and this may depend on the particular
phone type (Google Pixel phone in their case), the order of
magnitude is rather similar.

It is important to mention that despite this study provides a
verification of the accuracy of smartphone records for UHI
studies with respect to a professional weather station, in many of
our applications in urban meteorological research, the human
behavior remains a substantial player in the records that are
obtained. Droste et al. (2017) and Overeem et al. (2013) utilize
massive amounts of smartphone records, filter a substantial
amount based on the proximity sensor and the charging status
of the battery, though full control of the smartphone

environment (in a hand, in a pocket, in a hand bag) remains
unknown.

A particular problem with the use of smartphones is the
gradual reduction of sensors in popular smartphones. In order
to e.g., the recently released Samsung A50 does not have a
temperature, humidity, or pressure sensor. On the other hand,
the Covid-19 pandemic initiated the introduction of a
temperature sensor again in the Honor Play4. Additionally,
smartphones will maintain to be employed by battery
temperature sensors for monitoring the health of the phone.
To overcome the limited presence of air temperature sensors,
Chau (2019) developed an approach in which air temperature
data are estimated based on the recorded smartphone battery
sensor, either from in pocket or out pocket readings. However
their method was based on lab tests with a limited number of
smartphone copies and models, and therefore an experiment to
prove the wider and outdoor applicability needs to be
developed.

5 CONCLUSION

Crowdsourcing, i.e., the harvesting of a large number of sensor
data via internet has increased interest as data source for
weather and climate studies, in particular in cities where
traditional observation techniques are difficult to
implement. Earlier studies showed that massive amounts of
pressure, temperature, humidity and light observations by
smartphones can offer successfully information of local
weather conditions, provided a proper data quality
assessment and selection is performed. To enhance our
understanding of the value of these smartphones records,
here we evaluate the quality of weather observations by
smartphones (using a Samsung S4 in this case) with respect
to automated weather station observations and traverse
observation on a cargo bike. Under lab conditions, we find
the smartphone observations have a time constant of about
180 s for temperature and between 120 and 650 s for relative
humidity (depending on the direction of change and provided
no condensation occurs). We show that smartphone
temperature observations are subject to a bias that depends
on wind speed and solar radiation, but this bias can be
corrected for. After applying this bias correction during
traverse observations, smartphone temperature observations
can successfully replicate temperature observations by a
professional weather station. The smartphone light sensor
appears to have a cosine response with substantial data loss
for angles >45°, though after a scaling correction the light
sensor shows high potential for atmospheric research due to its
immediate response.
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