43 research outputs found

    Female mating competition alters female mating preferences in common gobies

    Get PDF
    Mating decisions can be affected by intrasexual competition and sensitive to operational sex-ratio (OSR) changes in the population. Conceptually, it is assumed that both male and female mate-competition may interfere with female reproductive decisions. Experimentally, however, the focus has been on the effect of male competition on mate choice. In many species with paternal care as in the common goby Pomatoschistus microps, the OSR is often female-biased and female mate-competition for access to available nesting males occurs. Using the same protocol for 3 experiments testing the effect of a perceived risk of female mate-competition, I studied female preferences for nest-holding males differing in its nest size (large/small), body size (large/small), and nest status (with/without eggs already in nest) and measured mating decisions, spawning latencies, and clutch size. Regardless of the social context, females preferred males with larger nests. A preference for large males was only expressed in presence of additional females. For nest status, there was a tendency for females to prefer mating with males with an empty nest. Here, female-female competition increased the propensity to mate. The results of this study show that females are sensitive to a female competitive social environment and suggest that in choice situations, females respond to the social context mainly by mating decisions per se rather than by adjusting the clutch size or spawning latency. Females base their mating decisions not only on a male's nest size but also on male size as an additional cue of mate quality in the presence of additional females.Peer reviewe

    Ecological variation along the salinity gradient in the Baltic Sea Area and its consequences for reproduction in the common goby

    Get PDF
    Although it has become clear that sexual selection may shape mating systems and drive speciation, the potential constraints of environmental factors on processes and outcomes of sexual selection are largely unexplored. Here, we investigate the geographic variation of such environmental factors, more precisely the quality and quantity of nest resources (bivalve shells) along a salinity gradient in the Baltic Sea Area (Baltic Sea, Sounds and Belts, and Kattegat). We further test whether we find any salinity-associated morphological differences in body size between populations of common gobies Pomatoschistus microps, a small marine fish with a resource-based mating system. In a geographically expansive field study, we sampled 5 populations of P. microps occurring along the salinity gradient (decreasing from West to East) in the Baltic Sea Area over 3 consecutive years. Nest resource quantity and quality decreased from West to East, and a correlation between mussel size and male body size was detected. Population density, sex ratios, mating- and reproductive success as well as brood characteristics also differed between populations but with a less clear relation to salinity. With this field study we shed light on geographic variation of distinct environmental parameters possibly acting on population differentiation. We provide insights on relevant ecological variation, and draw attention to its importance in the framework of context-dependent plasticity of sexual selection.Peer reviewe

    Decreased feeding rates of the copepod Acartia tonsa when exposed to playback harbor traffic noise

    Get PDF
    Copepods present the largest and most diverse group of zooplankton and their feeding behavior can affect top-down and bottom-up processes. Thus, how efficient feeding is executed determines the abundance of copepods’ prey and their predators and, with that, carbon transfer and storage in ecosystems. The rise of anthropogenic underwater noise from shipping, oil exploration and exploitation, wind farm construction and operation, and more, is increasingly changing the marine acoustic environment. This acoustic pollution can have detrimental effects on biological life. Studies on this topic increasingly indicate that anthropogenic underwater noise adversely affects primary producers, marine mammals, fish, and invertebrates. However, little data exist on the effects of anthropogenic underwater noise on the feeding behavior of zooplankton.We measured significantly decreased ingestion rates and clearance rates of A. tonsa when exposed to harbor noise compared to ambient conditions. The negative impact of noise on the ingestion rates was found at all given phytoplankton cell densities between 1k to 10k cells ml−1. Clearance rates were fitted to the Rogers random predator equation which revealed significantly decreased capture rates on phytoplankton under the exposure of harbor noise while handling times remained the same in both sound treatments.Our results call for follow-up studies to focus on noise driven community-effects in field experiments to confirm laboratory results and to predict the outcome of a changing world with multiple stressors. Further, the underlying mechanism on how noise affects the feeding behavior of copepods is still unknown. Noise may distract copepods or mask hydromechanical cues of the prey. Noise may also adversely affect copepod physiology or morphology that would lead to changes in the feeding behavior. All potential mechanisms need to be investigated rigorously in future experiments

    Noise Affects Multimodal Communication During Courtship in a Marine Fish

    Get PDF
    Selection pressures on signals can be substantially modified by a changing environment, but we know little about how modified selection pressures act on multimodal signals. The currently increasing levels of anthropogenic noise in the ocean may affect the use of acoustic signaling relative to other modalities. In the Painted Goby (Pomatoschistus pictus), visual and acoustic signals are associated during courtship behavior, but females usually rely more heavily on acoustic signals than on visual signals in mate choice. In an aquarium experiment, we compared male courtship behavior and female spawning decisions between silent treatments and treatments with additional noise. We found that the relationships between male characteristics, male visual and acoustic courtship, and spawning success were affected by noise. A path analysis revealed that females pay more attention to visual courtship in noisy circumstances compared to control. We conclude that environmental stressors can cause shifts in the use of different signaling modalities for spawning decisions and discuss how selection pressures on multimodal signals may change with increasing noise-levels

    Teaching laboratory for large cohorts of undergraduates : private and social information in fish

    Get PDF
    A challenge in the Bachelor's studies in Biology is to strike a balance between reducing the teaching of practical scientific experiments to what is feasible in a short time, and teaching “real” science in undergraduate laboratories for high numbers of participants. We describe a laboratory in behavioral biology, with the primary focus on the student learning. However, also the underlying scientific question and the results of the experiment, namely the behavior of the three‐spined stickleback (Gasterosteus aculeatus) in a trade‐off situation during foraging, is without a doubt timely and sufficient for scientific studies on this subject, and this through the experiments conducted and data collected by the students. The students rated this laboratory well and learned at the end that social information is certainly important, but that self‐learning can be more important, and this not only in small fish, but also for the students themselves.Publisher PDFPeer reviewe

    Life on the edge: hydrogen sulfide and the fish communities of a Mexican cave and surrounding waters

    Get PDF
    Most eucaryotic organisms classified as living in an extreme habitat are invertebrates. Here we report of a fish living in a Mexican cave (Cueva del Azufre) that is rich in highly toxic H2S. We compared the water chemistry and fish communities of the cave and several nearby surface streams. Our study revealed high concentrations of H2S in the cave and its outflow (El Azufre). The concentrations of H2S reach more than 300μM inside the cave, which are acutely toxic for most fishes. In both sulfidic habitats, the diversity of fishes was heavily reduced, and Poecilia mexicana was the dominant species indicating that the presence of H2S has an all-or-none effect, permitting only few species to survive in sulfidic habitats. Compared to habitats without H2S, P. mexicana from the cave and the outflow have a significantly lower body condition. Although there are microhabitats with varying concentrations of H2S within the cave, we could not find a higher fish density in areas with lower concentrations of H2S. We discuss that P. mexicana is one of the few extremophile vertebrates. Our study supports the idea that extreme habitats lead to an impoverished species diversit

    Natural products from myxomycetes : studies on constituents of Tubifera dimorphotheca etc.

    Get PDF
    研究科: 千葉大学大学院医学薬学府修了年:2006千大院医薬博甲第36

    Condition-dependence, genotype-by-environment interactions and the lek paradox

    No full text
    The lek paradox states that maintaining genetic variation necessary for 'indirect benefit' models of female choice is difficult, and two interrelated solutions have been proposed. 'Genic capture' assumes condition-dependence of sexual traits, while genotype-by-environment interactions (GEIs) offer an additional way to maintain diversity. However, condition-dependence, particularly with GEIs, implies that environmental variation can blur the relationship between male displays and offspring fitness. These issues have been treated separately in the past. Here we combine them in a population genetic model, and show that predictions change not only in magnitude but also in direction when the timing of dispersal between environments relative to the life cycle is changed. GEIs can dramatically improve the evolution of costly female preferences, but also hamper it if much dispersal occurs between the life history stage where condition is determined and mating. This situation also arises if selection or mutation rates are too high. In general, our results highlight that when evaluating any mechanism promoted as a potential resolution of the lek paradox, it is not sufficient to focus on its effects on genetic variation. It also has to be assessed to what extent the proposed mechanism blurs the association between male attractiveness and offspring fitness; the net balance of these two effects can be positive or negative, and often strongly context-dependent
    corecore