534 research outputs found

    Theory of the c-Axis Penetration Depth in the Cuprates

    Full text link
    Recent measurements of the London penetration depth tensor in the cuprates find a weak temperature dependence along the c-direction which is seemingly inconsistent with evidence for d-wave pairing deduced from in-plane measurements. We demonstrate in this paper that these disparate results are not in contradiction, but can be explained within a theory based on incoherent quasiparticle hopping between the CuO2 layers. By relating the calculated temperature dependence of the penetration depth \lambda_c(T) to the c-axis resistivity, we show how the measured ratio \lambda_c^2(0) / \lambda_c^2(T) can provide insight into the behavior of c-axis transport below Tc and the related issue of ``confinement.''Comment: 4 pages, REVTEX with psfig, 3 PostScript figures included in compressed for

    Electrical transport, thermal transport, and elastic properties of M2AlC (M=Ti, Cr, Nb, and V)

    Get PDF
    Physical Review B: Condensed Matter and Materials Physics, 72(11): pp. 115120-1—115120-6. Retrieved September 19, 2006 from http://www.mse.drexel.edu/max/pdf%20references/drexel_pdfs/papers/2005/HettingerPRB%202005_NSF.pdf. DOI: http://dx.doi.org/10.1103/PhysRevB.72.115120In this paper we report on a systematic investigation, in the 5 to 300 K temperature regime, of the electronic, magnetotransport, thermoelectric, thermal, and elastic properties of four M2AlC phases: Ti2AlC, V2AlC, Cr2AlC, and Nb2AlC. The electrical conductivity, Hall coefficient, and magnetoresistances are analyzed within a two-band framework assuming a temperature-independent charge carrier concentration. As with other MAX-phase materials, these ternaries are nearly compensated, viz. the densities and mobilities of electrons and holes are almost equal. There is little correlation between the Seebeck and Hall coefficients. With Young’s and shear moduli in the 270 GPa and 120 GPa range, respectively, the phases studied herein are reasonably stiff. With room temperature thermal conductivities in the 25 W/m K range (45 W/m K for V2AlC) they are also good thermal conductors

    Frequency Characteristics of Visually Induced Motion Sickness

    Get PDF
    This article was published in the journal, Human Factors [Sage Publications / © Human Factors and Ergonomics Society.]. The definitive version is available at: http://dx.doi.org/10.1177/0018720812469046Objective: The aim of this study was to explore the frequency response of visually induced motion sickness (VIMS) for oscillating linear motion in the foreand- aft axis. Background: Simulators, virtual environments, and commercially available video games that create an illusion of self-motion are often reported to induce the symptoms seen in response to true motion. Often this human response can be the limiting factor in the acceptability and usability of such systems. Whereas motion sickness in physically moving environments is known to peak at an oscillation frequency around 0.2 Hz, it has recently been suggested that VIMS peaks at around 0.06 Hz following the proposal that the summed response of the visual and vestibular selfmotion systems is maximized at this frequency. Methods: We exposed 24 participants to random dot optical flow patterns simulating oscillating foreand- aft motion within the frequency range of 0.025 to 1.6 Hz. Before and after each 20-min exposure, VIMS was assessed with the Simulator Sickness Questionnaire. Also, a standard motion sickness scale was used to rate symptoms at 1-min intervals during each trial. Results: VIMS peaked between 0.2 and 0.4 Hz with a reducing effect at lower and higher frequencies. Conclusion: The numerical prediction of the “crossover frequency” hypothesis, and the design guidance curve previously proposed, cannot be accepted when the symptoms are purely visually induced. Application: In conditions in which stationary observers are exposed to optical flow that simulates oscillating fore-and-aft motion, frequencies around 0.2 to 0.4 Hz should be avoided

    Wild Animals in Our Backyard. A Contextual Approach to the Intrinsic Value of Animals

    Get PDF
    As a reflection on recent debates on the value of wild animals we examine the question of the intrinsic value of wild animals in both natural and man-made surroundings. We examine the concepts being wild and domesticated. In our approach we consider animals as dependent on their environment, whether it is a human or a natural environment. Stressing this dependence we argue that a distinction can be made between three different interpretations of a wild animal’s intrinsic value: a species-specific, a naturalistic, and an individualistic interpretation. According to the species-specific approach, the animal is primarily considered as a member of its species; according to the naturalistic interpretation, the animal is seen as dependent on the natural environment; and according to the individualistic approach, the animal is seen in terms of its relationship to humans. In our opinion, the species-specific interpretation, which is the current dominant view, should be supplemented—but not replaced by—naturalistic and individualistic interpretations, which focus attention on the relationship of the animal to the natural and human environments, respectively. Which of these three interpretations is the most suitable in a given case depends on the circumstances and the opportunity for the animal to grow and develop according to its nature and capabilities
    corecore