179 research outputs found

    Late Eocene to middle Miocene (33 to 13 million years ago) vegetation and climate development on the North American Atlantic Coastal Plain (IODP Expedition 313, Site M0027)

    Get PDF
    ArticleWe investigated the palynology of sediment cores from Site M0027 of IODP (Integrated Ocean Drilling Program) Expedition 313 on the New Jersey shallow shelf to examine vegetation and climate dynamics on the east coast of North America between 33 and 13 million years ago and to assess the impact of over-regional climate events on the region. Palynological results are complemented with pollen-based quantitative climate reconstructions. Our results indicate that the hinterland vegetation of the New Jersey shelf was characterized by oak–hickory forests in the lowlands and conifer-dominated vegetation in the highlands from the early Oligocene to the middle Miocene. The Oligocene witnessed several expansions of conifer forest, probably related to cooling events. The pollen-based climate data imply an increase in annual temperatures from ∌11.5 °C to more than 16 °C during the Oligocene. The Mi-1 cooling event at the onset of the Miocene is reflected by an expansion of conifers and mean annual temperature decrease of ∌4 °C, from ∌16 °C to ∌12 °C around 23 million years before present. Relatively low annual temperatures are also recorded for several samples during an interval around ∌20 million years before present, which may reflect the Mi-1a and the Mi-1aa cooling events. Generally, the Miocene ecosystem and climate conditions were very similar to those of the Oligocene. Miocene grasslands, as known from other areas in the USA during that time period, are not evident for the hinterland of the New Jersey shelf, possibly reflecting moisture from the proto-Gulf Stream. The palaeovegetation data reveal stable conditions during the mid-Miocene climatic optimum at ∌15 million years before present, with only a minor increase in deciduous–evergreen mixed forest taxa and a decrease in swamp forest taxa. Pollen-based annual temperature reconstructions show average annual temperatures of ∌14 °C during the mid-Miocene climatic optimum, ∌2 °C higher than today, but ∌1.5 °C lower than preceding and following phases of the Miocene. We conclude that vegetation and regional climate in the hinterland of the New Jersey shelf did not react as sensitively to Oligocene and Miocene climate changes as other regions in North America or Europe due to the moderating effects of the North Atlantic. An additional explanation for the relatively low regional temperatures reconstructed for the mid-Miocene climatic optimum could be an uplift of the Appalachian Mountains during the Miocene, which would also have influenced the catchment area of our pollen record.We thank the entire IODP Expedition 313 Scientific Party for input, and the IODP staff for support. We thank M. Drljepan, R. Zanatta, V. Menke, K. Reichel, and S. Namyslo for their assistance with preparing and processing the samples, and during photographing. Discussions with C. Bjerrum, J. Browning, T. Donders, L. Fang, M. Katz, Y. Milker, K. Miller, and P. Sugarman are gratefully acknowledged. Input from K. DybkjĂŠr and anonymous reviewers was very much appreciated and contributed to a significant condensing of the manuscript. The German Science Foundation supported the research (DFG project KO 3944/3-1 to U. Kotthoff). Funding was also provided by NSERC Discovery Grants to F. M. G. McCarthy and to D. R. Greenwood respectively. NERC supported work by S. P. Hesselbo. This research used samples and/or data provided by the Integrated Ocean Drilling Program (IODP)

    Integrated stratigraphy of the Kimmeridge Clay Formation (Upper Jurassic) based on exposures and boreholes in south Dorset, UK

    Get PDF
    For the purposes of a high-resolution multi-disciplinary study of the Upper Jurassic Kimmeridge Clay Formation, two boreholes were drilled at Swanworth Quarry and one at Metherhills, south Dorset, UK. Together, the cores represent the first complete section through the entire formation close to the type section. We present graphic logs that record the stratigraphy of the cores, and outline the complementary geophysical and analytical data sets (gamma ray, magnetic susceptibility, total organic carbon, carbonate, [delta]13Corg). Of particular note are the new borehole data from the lowermost part of the formation which does not crop out in the type area. Detailed logs are available for download from the Kimmeridge Drilling Project web-site at http://kimmeridge.earth.ox.ac.uk/. Of further interest is a mid-eudoxus Zone positive shift in the [delta]13Corg record, a feature that is also registered in Tethyan carbonate successions, suggesting that it is a regional event and may therefore be useful for correlation. The lithostratigraphy of the cores has been precisely correlated with the nearby cliff section, which has also been examined and re-described. Magnetic-susceptibility and spectral gamma-ray measurements were made at a regular spacing through the succession, and facilitate core-to-exposure correlation. The strata of the exposure and core have been subdivided into four main mudrock lithological types: (a) medium-dark–dark-grey marl; (b) medium-dark–dark grey–greenish black shale; (c) dark-grey–olive-black laminated shale; (d) greyish-black–brownish-black mudstone. The sections also contain subordinate amounts of siltstone, limestone and dolostone. Comparison of the type section with the cores reveals slight lithological variation and notable thickness differences between the coeval strata. The proximity of the boreholes and different parts of the type section to the Purbeck–Isle of Wight Disturbance is proposed as a likely control on the thickness changes

    A Variational Inference based Detection Method for Repetition Coded Generalized Spatial Modulation

    Get PDF
    In this paper, we consider a simple coding scheme for spatial modulation (SM), where the same set of active transmit antennas is repeatedly used over consecutive multiple transmissions. Based on a Gaussian approximation, an approximate maximum likelihood (ML) detection problem is formulated to detect the indices of active transmit antennas. We show that the solution to the approximate ML detection problem can achieve a full coding gain. Furthermore, we develop a low-complexity iterative algorithm to solve the problem with low complexity based on a well-known machine learning approach, i.e., variational inference. Simulation results show that the proposed algorithm can have a near ML performance. A salient feature of the proposed algorithm is that its complexity is independent of the number of active transmit antennas, whereas an exhaustive search for the ML problem requires a complexity that grows exponentially with the number of active transmit antennas.Comment: 11 pages, 8 figure

    Carbon and oxygen isotope records from the southern Eurasian Seaway following the Triassic-Jurassic boundary: parallel long-term enhanced carbon burial and seawater warming

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordData availability: the associated dataset is deposited in Mendeley DataFossil shells of benthos and nektobenthos have been shown to be faithful recorders of seawater carbon- and oxygen-isotope geochemistry, and thus also useful to track the relationship between carbon cycle and palaeotemperature. In this study we present an extensive dataset from Lower Jurassic (Hettangian and lower Sinemurian) mollusc and brachiopod hard parts collected from biostratigraphically well-calibrated UK coastal outcrops (Bristol Channel and Hebrides basins). These basins lay palaeogeographically in the southern part of the Laurasian Seaway that connected the Tethys and Boreal oceans. All samples have been subject to screening for diagenesis on the basis of elemental composition, light microscopy, and SEM observations. In the case of some localities within the Hebrides Basin, alteration by hydrothermal systems around Paleogene intrusions has led to re-setting of carbonate oxygen isotopes, but the original carbon isotope values from the shells are largely preserved. Above the prominent and apparently short-lived, ~3 per mil ή13Ccarb amplitude positive carbon-isotope excursion (CIE) that occurs immediately above the Triassic-Jurasic (T-J) boundary (in the tilmanni ammonite biozone), a pronounced negative CIE (the so-called Main Negative CIE) spans the entire Hettangian Stage. At the Hettangian-Sinemurian boundary, and through the lower Sinemurian, the carbon-isotope values of the skeletal carbonate again trend towards progressively more positive values, but representing a time of several million years. The heaviest ή13Ccarb values of about ~ +4.3 per mil are evident towards the top of the lower Sinemurian, and are comparable with values observed from the tilmanni Zone, and from the lower Toarcian, higher in the Jurassic. This long-term positive hump, which confirms trends derived from bulk organic matter carbon-isotope records, is supporting evidence of prolonged enhanced organic carbon burial that is inferred to have occurred in the extensive system of lacustrine and marine rifts that traversed a fragmenting Pangaea after emplacement of the Central Atlantic Magmatic Province. In parallel, oxygen-isotope values of the skeletal carbonate show a continuous downward trend from the lower part of the Hettangian (~ −1 per mil ή18Ocarb in the planorbis Zone) to the top of the lower Sinemurian (~ −4 per mil ή18Ocarb in the higher turneri Zone). Oxygen-isotope values may be interpreted as due to gradually increasing palaeotemperature, and/or addition of a meteoric or cryospheric water component; in the case of the Laurasian Seaway, palaeoceanographic and palaeoecological considerations point towards a dominant palaeotemperature signal. Consequently, any atmospheric carbon-dioxide drawdown effect on global palaeotemperatures, as suggested by progressively increasing ή13Ccarb values, and assuming a constant silicate weathering sink, was more than counterbalanced in the seaway by regional processes that led to significantly warmer bottom water temperatures.Natural Environment Research Council (NERC)Danish Council for Independent Research–Natural SciencesCarlsberg FoundationLeopoldina – German National Academy of Science

    Vezava proteinov NLP na lipidne membrane

    Get PDF
    ArticleMacrofossil calcite is of great importance for quantitative reconstructions of palaeoenvironment and palaeoseasonality. The calcite rostra of belemnites, Jurassic to Cretaceous marine invertebrates, are especially suited for such investigations, because they are comparatively large and are structured by growth bands. Despite their use in chemostratigraphic and palaeoenvironmental studies, much of the internal variability of geochemical signatures in rostra is poorly understood. Here, multiple profiles through a belemnite rostrum of Passaloteuthis bisulcata (∌183 Myr old) were analyzed for ÎŽ13C and ÎŽ18O values as well as Mg/Ca, Sr/Ca and Mn/Ca ratios. Geochemical signatures of the central 1–2 mm of the profiles indicate diagenetic cementation along the apical zone, for which original porosity of up to 40% can be inferred. The overall ÎŽ13C and ÎŽ18O values of the other, well preserved parts of the belemnite fluctuate by >1 per mil, but are nearly uniform within single growth bands. In contrast, Sr/Ca and Mg/Ca in the well-preserved parts show growth-rate and crystal-shape related variability. Close to the central apical zone, strongly bent calcite crystals are enriched in Mg (up to 70%) and Sr (up to 50%). Through the remainder of the rostrum, higher calcite precipitation rate can account for Mg depletion of ∌15% and Sr enrichment of ∌15% with respect to co-genetic calcite precipitated at a slower rate. No indication for temperature control on Mg/Ca or Sr/Ca is detected in the investigated specimen. Overall, the new findings indicate that ÎŽ13C and ÎŽ18O analyses of belemnite rostra produce consistent results regardless of the sampling area within the rostrum, and that growth rate effects on element incorporation are minor with respect to the control exerted by secular changes in seawater composition through time. Additionally, the central part of the rostrum, where strong calcite crystal bending is observed, should be avoided for sampling when studying elemental composition of the calcite for palaeoenvironmental reconstructions.Deutsche Akademie der Naturforscher Leopoldina – German National Academy of Science

    A comparison of extremal optimization with flat-histogram dynamics for finding spin-glass ground states

    Full text link
    We compare the performance of extremal optimization (EO), flat-histogram and equal-hit algorithms for finding spin-glass ground states. The first-passage-times to a ground state are computed. At optimal parameter of tau=1.15, EO outperforms other methods for small system sizes, but equal-hit algorithm is competitive to EO, particularly for large systems. Flat-histogram and equal-hit algorithms offer additional advantage that they can be used for equilibrium thermodynamic calculations. We also propose a method to turn EO into a useful algorithm for equilibrium calculations. Keywords: extremal optimization. flat-histogram algorithm, equal-hit algorithm, spin-glass model, ground state.Comment: 10 LaTeX pages, 2 figure

    Evolution of the Toarcian (Early Jurassic) carbon-cycle and global climatic controls on local sedimentary processes (Cardigan Bay Basin, UK)

    Get PDF
    The late Early Jurassic Toarcian Stage represents the warmest interval of the Jurassic Period, with an abrupt rise in global temperatures of up to ∌7 °C in mid-latitudes at the onset of the early Toarcian Oceanic Anoxic Event (T-OAE; ∌183 Ma). The T-OAE, which has been extensively studied in marine and continental successions from both hemispheres, was marked by the widespread expansion of anoxic and euxinic waters, geographically extensive deposition of organic-rich black shales, and climatic and environmental perturbations. Climatic and environmental processes following the T-OAE are, however, poorly known, largely due to a lack of study of stratigraphically well-constrained and complete sedimentary archives. Here, we present integrated geochemical and physical proxy data (high-resolution carbon-isotope data (ÎŽ13C), bulk and molecular organic geochemistry, inorganic petrology, mineral characterisation, and major- and trace-element concentrations) from the biostratigraphically complete and expanded entire Toarcian succession in the Llanbedr (Mochras Farm) Borehole, Cardigan Bay Basin, Wales, UK. With these data, we (1) construct the first high-resolution biostratigraphically calibrated chemostratigraphic reference record for nearly the complete Toarcian Stage, (2) establish palaeoceanographic and depositional conditions in the Cardigan Bay Basin, (3) show that the T-OAE in the hemipelagic Cardigan Bay Basin was marked by the occurrence of gravity-flow deposits that were likely linked to globally enhanced sediment fluxes to continental margins and deeper marine (shelf) basins, and (4) explore how early Toarcian (tenuicostatum and serpentinum zones) siderite formation in the Cardigan Bay Basin may have been linked to low global oceanic sulphate concentrations and elevated supply of iron (Fe) from the hinterland, in response to climatically induced changes in hydrological cycling, global weathering rates and large-scale sulphide and evaporite deposition

    Monte Carlo simulation and global optimization without parameters

    Full text link
    We propose a new ensemble for Monte Carlo simulations, in which each state is assigned a statistical weight 1/k1/k, where kk is the number of states with smaller or equal energy. This ensemble has robust ergodicity properties and gives significant weight to the ground state, making it effective for hard optimization problems. It can be used to find free energies at all temperatures and picks up aspects of critical behaviour (if present) without any parameter tuning. We test it on the travelling salesperson problem, the Edwards-Anderson spin glass and the triangular antiferromagnet.Comment: 10 pages with 3 Postscript figures, to appear in Phys. Rev. Lett

    Seawater redox variations during the deposition of the Kimmeridge Clay Formation, United Kingdom (Upper Jurassic): evidence from molybdenum isotopes and trace metal ratios

    Get PDF
    The Kimmeridge Clay Formation (KCF) and its equivalents worldwide represent one of the most prolonged periods of organic carbon accumulation of the Mesozoic. In this study, we use the molybdenum (Mo) stable isotope system in conjunction with a range of trace metal paleoredox proxies to assess how seawater redox varied both locally and globally during the deposition of the KCF. Facies with lower organic carbon contents (TOC 1–7 wt %) were deposited under mildly reducing (suboxic) conditions, while organic-rich facies (TOC >7 wt %) accumulated under more strongly reducing (anoxic or euxinic) local conditions. Trace metal abundances are closely linked to TOC content, suggesting that the intensity of reducing conditions varied repeatedly during the deposition of the KCF and may have been related to orbitally controlled climate changes. Long-term variations in ?98/95Mo are associated with the formation of organic-rich intervals and are related to third-order fluctuations in relative sea level. Differences in the mean ?98/95Mo composition of the organic-rich intervals suggest that the global distribution of reducing conditions was more extensive during the deposition of the Pectinatites wheatleyensis and lower Pectinatites hudlestoni zones than during the deposition of the upper Pectinatites hudlestoni and Pectinatites pectinatus zones. The global extent of reducing conditions during the Kimmerigidan was greater than today but was less widespread than during the Toarcian (Early Jurassic) oceanic anoxic event. This study also demonstrates that the Mo isotope system in Jurassic seawater responded to changes in redox conditions in a manner consistent with its behavior in present-day sedimentary environment

    Orbital pacing and secular evolution of the Early Jurassic carbon cycle

    Get PDF
    Cyclic variations in Earth’s orbit drive periodic changes in the ocean–atmosphere system at a time scale of tens to hundreds of thousands of years. The Mochras ÎŽ13CTOC record illustrates the continued impact of long-eccentricity (405-ky) orbital forcing on the carbon cycle over at least ∌18 My of Early Jurassic time and emphasizes orbital forcing as a driving mechanism behind medium-amplitude ÎŽ13C fluctuations superimposed on larger-scale trends that are driven by other variables such as tectonically determined paleogeography and eruption of large igneous provinces. The dataset provides a framework for distinguishing between internal Earth processes and solar-system dynamics as the driving mechanism for Early Jurassic ÎŽ13C fluctuations and provides an astronomical time scale for the Sinemurian Stage
    • 

    corecore