149 research outputs found

    Novel system for distributed energy generation from a small scale concentrated solar power

    Get PDF
    The present work describes the realization of a modular 1-3 kWe, 3-9 kWth micro Combined Heat and Power (m-CHP) system based on innovative Concentrated Solar Power (CSP) and Stirling engine technology. The cogeneration of energy at distributed level is one of leading argument in large part of energy policies related to renewable energy resources and systems. This CSP m-CHP will provide electrical power, heating and cooling for single and multiple domestic dwellings and other small buildings. The developed system integrates small-scale concentrator optics with moving and tracking components, solar absorbers in the form of evacuated tube collectors, a heat transfer fluid, a Stirling engine with generator, and heating and/or cooling systems; it incorporates them into buildings in an architecturally acceptable manner, with low visual impact. Some good results have already been achieved, while developments on several technology subcomponents will be finalized through first part of 2013. Two Cer.Met. have been modelled, realized and tested. The up scaled receiver, in form of Cer.Met. coating based on TiO2 - Nb, has been confirmed an absorptance of 0.94 and emittance of 0.1 (@350°C). A second Cer.Met. coating based on SiO2 - W has demonstrated an absorptance of 0.93 and emittance of 0.09 (@350°C). A full-evacuated solar tube has been designed and realized, with absorber of 12 mm in diameter and length in 2 meters. The system is provided of a concentration ratio 12:1, and a single module is 200 cm long, 40 cm wide and 20-25 cm high. Two or more modules can be combined. The evacuated solar tube, located on the focus, has the selective absorber on a tube of 12 mm in diameter. A very thin glass mirror has been developed (< 1 mm). The overall mirror reflectivity has been measured, the verified value is 0,954. Research has proposed a high energy density, double acting Stirling engine, provided of innovative heat exchangers realized through Selective Laser Melting process. The engine is a low speed (250 RPM), high pressure (130 Bars) and compact solution able to be run at 300°C and generate 3,5 kW nominal power. The solar technology has actually entered the proof-of-concept stage. A solar plant has been installed in Malta, by Arrow Pharm company, supplying the industrial process of generated steam at 180°C and 3.5 absolute pressure. The solar collector's efficiency is close to 47% in presence of 900 W/m2 of direct solar radiation. During 2013, solar evacuated tubes with innovative Cer.Met. coating, together with new thin glass mirrors will upgrade the demonstration site, together with a new and innovative low temperature difference and high energy density Stirling. By end-2013, the system will be demonstrated, with the overall objective to achieve a minimum of 65% in solar collectors' efficiency at 300°C, and 12 - 15% of overall electrical efficiency by the Stirling cycle.peer-reviewe

    Neutrophile Granulozyten exprimieren unterschiedliche RNA-Sequenzen nach Kloinkubation mit E. coli, ESBL-E.coli, S.aureus und MRSA

    Get PDF
    Die Fragestellung dieser Arbeit ist, ob Neutrophile Granulozyten nach Kontakt mit verschiedenen Bakterien unterschiedliche Genexpressionsveränderungen aufweisen. In den Versuchen konnte gezeigt werden, dass die Genaktivierung in Neutrophilen Granulozyten durch Bakterienkontakt sowohl zu Bakterienspezies-unabhängigen Regulierungen als auch zu Bakterien-spezifischen Transkriptionsveränderungen führt. Am eindeutigsten waren die Unterschiede in der Genregulation zwischen Gram-positiven und Gram-negativen Bakterienstämmen

    Comparison of methods for sampling particulate emissions from tires under different test environments

    Get PDF
    Traffic-related emissions are strongly criticised by the public because they contribute to climate change and are classified as hazardous to health. Combustion engine emissions have been regulated by limit values for almost three decades. There is currently no legal limit for non-exhaust emissions, which include tire wear particle emissions and resuspension. As a result, the percentage of total vehicle emissions has risen continuously. Some of the particles emitted can be assigned to the size classes of particulate matter (≤10 µm) and are therefore of particular relevance to human health. The literature describes a wide range of concepts for sampling and measuring tire wear particle emissions. Because of the limited number of studies, the mechanisms involved in on-road tests and their influence on the particle formation process, particle transport and the measuring ability can only be described incompletely. The aim of this study is to compare test bench and on-road tests and to assess the influence of selected parameters. The first part describes the processes of particle injection and particle distribution. Based on this, novel concepts for sampling and measurement in the laboratory and in the field are presented. The functionality and the mechanisms acting in each test environment are evaluated on the basis of selected test scenarios. For example, emissions from external sources, the condition of the road surface and the influence of the driver are identified as influencing factors. These analyzes are used to illustrate the complexity and limited reproducibility of on-road measurements, which must be taken into account for future regulations

    Analysis of TRWP particle distribution in urban and suburban landscapes, connecting real road measurements with particle distribution simulation

    Get PDF
    This article deals with methods and measurements related to environmental pollution and analysis of particle distribution in urban and suburban landscapes. Therefore, an already-invented sampling method for tyre road wear particles (TRWP) was used to capture online emission factors from the road. The collected particles were analysed according to their size distribution, for use as an input for particle distribution simulations. The simulation model was a main traffic intersection, because of the high vehicle dynamic related to the high density of start–stop manoeuvres. To compare the simulation results (particle mass (PM) and particle number (PN)) with real-world emissions, measuring points were defined and analysed over a measuring time of 8 h during the day. Afterwards, the collected particles were analysed in terms of particle shape, appearance and chemical composition, to identify the distribution and their place of origin. As a result of the investigation, the appearance of the particles showed a good correlation to the vehicle dynamics, even though there were a lot of background influences, e.g., resuspension of dust. Air humidity also showed a great influence on the recorded particle measurements. In areas of high vehicle dynamics, such as heavy braking or accelerating, more tyre and brake particles could be found

    Assessment of personality-related levels of functioning:a pilot study of clinical assessment of the DSM-5 level of personality functioning based on a semi-structured interview

    Get PDF
    BACKGROUND: The personality disorder categories in the Diagnostic and Statistical Manual of Mental Disorders IV have been extensively criticized, and there is a growing consensus that personality pathology should be represented dimensionally rather than categorically. The aim of this pilot study was to test the Clinical Assessment of the Level of Personality Functioning Scale, a semi-structured clinical interview, designed to assess the Level of Personality Functioning Scale of the DSM-5 (Section III) by applying strategies similar to what characterizes assessments in clinical practice. METHODS: The inter-rater reliability of the assessment of the four domains and the total impairment in the Level of Personality Functioning Scale were measured in a patient sample that varied in terms of severity and type of pathology. Ratings were done independently by the interviewer and two experts who watched a videotaped Clinical Assessment of the Level of Personality Functioning Scale interview. RESULTS: Inter-rater reliability coefficients varied between domains and were not sufficient for clinical practice, but may support the use of the interview to assess the dimensions of personality functioning for research purposes. CONCLUSIONS: While designed to measure the Level of Personality Functioning Scale with a high degree of similarity to clinical practice, the Clinical Assessment of the Level of Personality Functioning Scale had weak reliabilities and a rating based on a single interview should not be considered a stand-alone assessment of areas of functioning for a given patient

    Generalized Fuzzy Password-Authenticated Key Exchange from Error Correcting Codes

    Get PDF
    Fuzzy Password-Authenticated Key Exchange (fuzzy PAKE) allows cryptographic keys to be generated from authentication data that is both fuzzy and of low entropy. The strong protection against offline attacks offered by fuzzy PAKE opens an interesting avenue towards secure biometric authentication, typo-tolerant password authentication, and automated IoT device pairing. Previous constructions of fuzzy PAKE are either based on Error Correcting Codes (ECC) or generic multi-party computation techniques such as Garbled Circuits. While ECC-based constructions are significantly more efficient, they rely on multiple special properties of error correcting codes such as maximum distance separability and smoothness. We contribute to the line of research on fuzzy PAKE in two ways. First, we identify a subtle but devastating gap in the security analysis of the currently most efficient fuzzy PAKE construction (Dupont et al., Eurocrypt 2018), allowing a man-in-the-middle attacker to test individual password characters. Second, we provide a new fuzzy PAKE scheme based on ECC and PAKE that provides a built-in protection against individual password character guesses and requires fewer, more standard properties of the underlying ECC. Additionally, our construction offers better error correction capabilities than previous ECC-based fuzzy PAKEs

    A New Outlook on Ice Cloud through Sub-Millimetre-Wave Scattering

    Get PDF
    Scattering by atmospheric ice at sub-mm-wave frequencies is a challenge to both the cloud physics and light scattering communities owing to scattering at these frequencies being dependent on assumptions about the particle size distribution, ice crystal shape, orientation and size. Moreover, the scattering also depends on how the particle density is assumed to evolve with size. As there is as yet no prediction of a universal PSD or mass–dimension or density–dimension relationship, the modelling of ice crystals, so as to conserve the observed scattering and ice mass, is potentially problematic. In this presentation, the challenge presented by sub-mm-wave scattering is explored through the study of an ice cloud case using a new sub-mm spectral-like radiometer that was deployed on board an aircraft. Here, we evaluate the predictive quality of applying members from an ensemble model of cirrus ice crystals to modelling observed sub-millimetre brightness temperatures. The airborne straight and level near-nadir observations used here were from a case of ice cloud, which occurred during a winter period. The airborne microwave observations were obtained using the International Submillimetre Airborne Radiometer (ISMAR) [1], as the observations collected were at near-nadir we do not as yet consider polarisation. The ISMAR instrument has five central frequencies located between 118 and 664 GHz, with a number of sub-channels situated around some of the central frequencies to obtain spectral-like observations. The frequency selected for presentation is the 664 GHz “window” channel. This channel selection reduces uncertainties in modelling the gaseous spectroscopy, thereby enabling the scattering properties of members of the ensemble model to be more directly evaluated at this frequency. This is also the frequency that is most sensitive to assumptions about the ice crystal models and microphysics. The methodologies adopted for the calculation of the single-scattering properties of the ensemble model members at this frequency have been previously peer-reviewed and published [2, 3]. As such, this presentation concentrates on the application of these methodologies to the interpretation of the airborne ISMAR observations using a fast, state-of-the-art line-by-line radiative transfer model [4]. Moreover, state-of-the-art airborne observations of particle size distributions (PSDs) were also collected from the ice cloud case. These in-situ PSDs, as well as an often used database of in-situ PSDs collected during the SPARTICUS campaign in 2010, are applied to the two most compact and spatial hexagonal ice aggregate members of the ensemble model. A further ice aggregate model, called the Voronoi model, forming a chain of polyhedral particles, constructed to follow an observed density–dimension relationship, was also applied so as to simulate the observations. From the in-situ PSDs, geometric optics-based power law relationships have been previously obtained between the ice water content and the bulk extinction coefficient [5]. These same geometric optics-based relationships were estimated using the area–dimension power laws predicted by the ensemble model members and the Voronoi model. The best-fit ensemble model members to the observed power laws, and the Voronoi model, were applied in order to simulate the sub-mm-wave observations. Thus, we demonstrate consistency of model application from the limit of geometric optics (i.e. typically at visible wavelengths) to the sub-mm. In this presentation, we demonstrate a general overlap between the uncertainty in the radiative transfer simulations assuming the ensemble model members and the uncertainty in ISMAR brightness temperature observations at 664 GHz. However, portions of the straight and level runs were either simulated well with the compact aggregate model member or a three-component model, consisting of the two members of the ensemble model and the Voronoi particle, but never with one and the same model. Owing to the Voronoi model being the most spatial of all the models, this model simulated, to within the upper end of the experimental uncertainty, the ISMAR observations, but never the coldest observations at the highest sub-mm-wave frequency. However, if a different density–dimension relationship were to be adopted in the modelling of the Voronoi model that predicted higher mass values, then this should result in an improved agreement with the observations. It is as yet unclear as to which density–dimension relation is best to apply in general. These observations indicate changes in microphysics in terms of the mass–dimension profile and/or the size of the ice crystals and, therefore, represent a challenge to the global retrieval of ice cloud properties using the Ice Cloud Imager (ICI), which is due for launch around 2022. A further uncertainty is the assumed parametrised shape of the PSD. We also show in this presentation that the choice of PSD and ice crystal models are of equal importance in interpreting sub-mm-wave observations. [1] Fox, S et al., 2017: ISMAR: an airborne submillimetre radiometer. Atmos. Meas. Tech., doi:10.5194/ amt-10-477-2017. [2] Baran, A. J., et al., 2018: The applicability of physical optics in the millimetre and sub-millimetre spectral region. Part II: Application to a three-component model of ice cloud and its evaluation against the bulk single-scattering properties of various other aggregate models. JQSRT. 206, 68-80. [3] Baran, A. J., Hesse E., and Sourdeval O., 2017: The applicability of physical optics in the millimetre and sub-millimetre spectral region. Part I: The ray tracing with diffraction on facets method. JQSRT. 190, 83-100. [4] Havemann, S et al., The Havemann-Taylor Fast Radiative Transfer Code (HT-FRTC): a multipurpose code based on Principal Components, submitted to JQSRT (February 2018). [5] Fox, S et al., 2017: ISMAR: an airborne submillimetre radiometer. Atmos. Meas. Tech., doi:10.5194/ amt-10-477-2017.Peer reviewe

    Proteome analysis of human neutrophil granulocytes from patients with monogenic disease using data-independent acquisition

    Get PDF
    Neutrophil granulocytes are critical mediators of innate immunity and tissue regeneration. Rare diseases of neutrophil granulocytes may affect their differentiation and/or functions. However, there are very few validated diagnostic tests assessing the functions of neutrophil granulocytes in these diseases. Here, we set out to probe omics analysis as a novel diagnostic platform for patients with defective differentiation and function of neutrophil granulocytes. We analyzed highly purified neutrophil granulocytes from 68 healthy individuals and 16 patients with rare monogenic diseases. Cells were isolated from fresh venous blood (purity >99%) and used to create a spectral library covering almost 8000 proteins using strong cation exchange fractionation. Patient neutrophil samples were then analyzed by data-independent acquisition proteomics, quantifying 4154 proteins in each sample. Neutrophils with mutations in the neutrophil elastase gene ELANE showed large proteome changes that suggest these mutations may affect maturation of neutrophil granulocytes and initiate misfolded protein response and cellular stress mechanisms. In contrast, only few proteins changed in patients with leukocyte adhesion deficiency (LAD) and chronic granulomatous disease (CGD). Strikingly, neutrophil transcriptome analysis showed no correlation with its proteome. In case of two patients with undetermined genetic causes, proteome analysis guided the targeted genetic diagnostics and uncovered the underlying genomic mutations. Data-independent acquisition proteomics may help to define novel pathomechanisms in neutrophil diseases and provide a clinically useful diagnostic dimension
    corecore