4,001 research outputs found

    A Serendipitous XMM-Newton Observation of the Intermediate Polar WX Pyx

    Full text link
    We briefly describe a serendipitous observation of the little-studied intermediate polar WX Pyx using XMM-Newton. The X-ray spin period is 1557.3 sec, confirming the optical period published in 1996. An orbital period of approximately 5.54 hr is inferred from the separation of the spin-orbit sidelobe components. The soft and hard band spin-folded light curves are nearly sinusoidal in shape. The best-fit spectrum is consistent with a bremsstrahlung temperature of about 18 keV. An upper limit of approximately 300 eV is assigned to the presence of Fe line emission. WX Pyx lies near TX and TV Col in the P_spin-P_orb plane.Comment: 5 pages, 5 figs; accepted A&A 2004 Dec

    On the work distribution for the adiabatic compression of a dilute classical gas

    Get PDF
    We consider the adiabatic and quasi-static compression of a dilute classical gas, confined in a piston and initially equilibrated with a heat bath. We find that the work performed during this process is described statistically by a gamma distribution. We use this result to show that the model satisfies the non-equilibrium work and fluctuation theorems, but not the flucutation-dissipation relation. We discuss the rare but dominant realizations that contribute most to the exponential average of the work, and relate our results to potentially universal work distributions.Comment: 4 page

    Orientation and Alignment Echoes

    Full text link
    We present what is probably the simplest classical system featuring the echo phenomenon - a collection of randomly oriented free rotors with dispersed rotational velocities. Following excitation by a pair of time-delayed impulsive kicks, the mean orientation/alignment of the ensemble exhibits multiple echoes and fractional echoes. We elucidate the mechanism of the echo formation by kick-induced filamentation of phase space, and provide the first experimental demonstration of classical alignment echoes in a thermal gas of CO_2 molecules excited by a pair of femtosecond laser pulses

    Malaria infection in anolis lizards on martinique, lesser antilles

    Get PDF

    Synchronization and Redundancy: Implications for Robustness of Neural Learning and Decision Making

    Full text link
    Learning and decision making in the brain are key processes critical to survival, and yet are processes implemented by non-ideal biological building blocks which can impose significant error. We explore quantitatively how the brain might cope with this inherent source of error by taking advantage of two ubiquitous mechanisms, redundancy and synchronization. In particular we consider a neural process whose goal is to learn a decision function by implementing a nonlinear gradient dynamics. The dynamics, however, are assumed to be corrupted by perturbations modeling the error which might be incurred due to limitations of the biology, intrinsic neuronal noise, and imperfect measurements. We show that error, and the associated uncertainty surrounding a learned solution, can be controlled in large part by trading off synchronization strength among multiple redundant neural systems against the noise amplitude. The impact of the coupling between such redundant systems is quantified by the spectrum of the network Laplacian, and we discuss the role of network topology in synchronization and in reducing the effect of noise. A range of situations in which the mechanisms we model arise in brain science are discussed, and we draw attention to experimental evidence suggesting that cortical circuits capable of implementing the computations of interest here can be found on several scales. Finally, simulations comparing theoretical bounds to the relevant empirical quantities show that the theoretical estimates we derive can be tight.Comment: Preprint, accepted for publication in Neural Computatio

    Ultimate field-free molecular alignment by combined adiabatic-impulsive field design

    Full text link
    We show that a laser pulse designed as an adiabatic ramp followed by a kick allows one to reach a perfect postpulse molecular alignment, free of saturation. The mechanism is based on an optimized distribution of the energy between a weakly efficient but non saturating adiabatic ramp and an efficient but saturating impulsive field. Unprecedent degrees of alignment are predicted using state-of-the-art pulse shaping techniques and non-destructive field intensities. The scheme can be extended to reach high degrees of orientation of polar molecules using designed half-cycle pulses.Comment: 5 pages, 4 page
    • …
    corecore