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On the work distribution for the adiabatic compression of a dilute classical gas
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We consider the adiabatic and quasi-static compression of a dilute classical gas, confined in a piston
and initially equilibrated with a heat bath. We find that the work performed during this process is
described statistically by a gamma distribution. We use this result to show that the model satisfies
the non-equilibrium work and fluctuation theorems, but not the flucutation-dissipation relation. We
discuss the rare but dominant realizations that contribute most to the exponential average of the
work, and relate our results to potentially universal work distributions.
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When a system is driven away from an initial state of
thermal equilibrium by a mechanical perturbation, the
statistical distribution of work for that process exhibits
universal properties. In particular, the exponential aver-
age of the nonequilibrium work is related to an equilib-
rium free energy difference [1, 2],

β∆F = − ln
〈
e−βW

〉
= − ln

∫
dW ρ(W )e−βW . (1)

Furthermore, the work distribution for such a process,
and the corresponding reversed process, are related by
the following work fluctuation theorem [3, 4]:

ρF(+W )
ρR(−W )

= eβ(W−∆F ) (2)

Here, W is the work performed during a given realization
of the process [5]; β is the inverse temperature of a ther-
mal environment with which the system is initially equi-
librated; ∆F is the free energy difference between two
equilibrium states, both at temperature β−1, correspond-
ing to the initial and final values of the external work
parameter; ρ is the work probability distribution; and
the subscripts ‘F ’ and ‘R’ distinguish conjugate forward
and reverse processes, where necessary. (See Refs. [1–6]
for more details and Ref. [7] for an overview of related
entropy fluctuation relations.)

The discovery of these relations makes it interesting to
find model systems for which the work distributions can
be computed analytically [8–17]. Exact results have re-
cently been derived for the example of a piston moving at
arbitrary speed against an ideal gas [11–13]. Here we con-
sider the somewhat different case of the quasi-static com-
pression or expansion of a dilute (but not ideal) classical
gas. This model was suggested in email correspondence
to one of us (C.J.) by Prof. Seth Putterman, and has
also appeared in this setting in a preprint by Prof. Jaey-
oung Sung [18]. Using elementary statistical mechanics,
we derive a non-trivial but tractable expression for the
work distribution ρ(W ), Eq. 12, and use this to verify
and illustrate Eqs. 1 and 2.

FIG. 1: A gas confined to a cylinder with a controllable piston

Let us define the model more precisely. Consider the
system shown in figure 1, a dilute classical gas confined
in a piston. We assume that quantum effects are negligi-
ble, that the particles do not have any important internal
structure, and that they rarely collide with one another.
Specifically, the mean free path between particle-particle
collisions is finite (unlike in Refs. [11–13]), but much
greater than the characteristic distance between nearby
particles. Initially, the piston is held fixed and the gas is
brought to thermal equilibrium with an external, infinite
heat bath. The bath is then removed, preventing the fur-
ther exchange of heat across the walls of the container.
The piston is then very slowly forced inward, performing
work as it compresses the gas to a new volume. In the
corresponding reverse process we start with the gas at
thermal equilibrium with the final volume of the forward
process and then we adiabatically expand the gas back
to the initial volume.

It is useful to define a reference process, during which
the gas remains in contact with the reservoir, and thus at
constant temperature, as it is compressed reversibly; ∆F
in Eqs. 1, 2 is the free energy change during this reference
process. By contrast, during the adiabatic compression
described above, there is a steady rise in the kinetic tem-
perature of the gas. Thus, although the gas continually
self-equilibrates due to particle-particle collisions, it is
driven away from the isothermal sequence of equilibrium
states defined by the reference process.

As a first pass at this model, let us use simple ar-
guments to verify Eq. 1. In three spatial dimensions,
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FIG. 2: The work probability density, ρ(W ), given by Eq. 12. The solid lines are the work of compression and the dashed
lines are the negative work of expansion. Note that the magnitude of the work is greater for compression than expansion.
Each distribution obeys the nonequilibrium work theorem (1) and each compression-expansion pair are related by the work
fluctuation theorem (2). A direct consequence of the latter, illustrated in the figure, is that the corresponding forward and
negative reverse work distributions cross at W = ∆F (13).

the average equilibrium internal energy of a dilute gas
of N identical particles is E = 3N/2β, and the en-
tropy is given by the Sackur-Tetrode equation, S/N =
ln(V/NΛ3) + 5/2. Here V is the volume of the box, and
Λ =

√
βh2/2πm is the thermal de Broglie wavelength (h

is Planck’s constant and m is the particle mass). The
free energy F = E − β−1S is then

F (β, V ) = −N

β

[
ln

(
V

N

)
+

3
2

ln
(

2πm

βh2

)
+ 1

]
, (3)

which satisfies the scaling law (for any σ > 0):

σF (σβ, V ) = F (β, σ−3/2V ). (4)

When such a gas is prepared in equilibrium, as de-
scribed above, its energy E can be viewed as a random
variable sampled from the canonical distribution,

P (E;β, V ) =
1

Z(β, V )
g(E;V ) e−βE , (5)

where g(E) is the density of states and Z = e−βF is
the partition function. Since the pressure of a dilute
gas is p = 2E/3V , and its energy during an adiabatic
process changes by increments dE = −pdV , it follows
that the product V E3/2 is conserved as we slowly change
the volume from V0 to V1 [18]. The final energy is thus
E1 = (V0/V1)2/3E0, and the work performed is

W = E1 − E0 = αE0, α =
(

V0

V1

)2/d

− 1, (6)

where d = 3. Note that α (and therefore W ), is pos-
itive for compression and negative for expansion, and
that −1 < α < ∞. For expansion the negative work
is bounded by the initial kinetic energy.

Defining q ≡ α + 1 = (V0/V1)2/d, we get

− ln
〈
e−βW

〉
= − ln

∫
dE0 P (E0;β, V0) e−βW (E0)

= − ln
[

1
Z(β, V0)

∫
dE0 g(E0;V0) e−qβE0

]
= − ln

Z(qβ, V0)
Z(β, V0)

= qβF (qβ, V0)− βF (β, V0).

But qF (qβ, V0) = F (β, V1) (Eq. 4), hence the right side
is simply β∆F , as predicted by Eq. 1.

Although the above analysis is simple, it has its draw-
backs. Eq. 3 is a large-N approximation, not an exact
result. Moreover, we have invoked macroscopic, thermo-
dynamic arguments in deriving Eq. 6. Such arguments
are valid when the aim is to describe the typical behavior
of a system, but become suspect in the present context,
since the average 〈exp(−βW )〉 is often dominated by real-
izations during which the system behaves very atypically.
Finally, to verify Eq. 2 we must solve for ρ(W ), which re-
quires obtaining the density of states, g(E). We therefore
now proceed with a more careful analysis. For the sake
of generality, we allow the dimensionality of space to be
an arbitrary integer d > 1, rather than assuming d = 3.

The density of states is the derivative of the function
Φ(E), defined as the number of energy states with energy
less than E. For a dilute gas in the classical limit,

Φ(E;V ) =
1

h2k
· V N

N !
· (2πmE)k

k Γ(k)
, (7)

where k = dN/2, and Γ(k) is the gamma function. On
the right side of Eq. 7, the first factor accounts for the
quantum graininess of phase space, the middle factor
V N/N ! counts the number of arrangements of N identi-
cal particles in a volume V , and the last factor is the vol-
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ume of a dN -dimensional hypersphere of radius
√

2mE
in momentum space [19]. Hence

g(E;V ) =
∂Φ
∂E

=
1

h2k
· V N

N !
· (2πm)k

Γ(k)
· Ek−1. (8)

The partition function Z =
∫

dE ge−βE and free en-
ergy F now follow by direct integration:

F (β, V ) = − 1
β

lnZ(β, V ) = − 1
β

ln

[
V N

N !

(
2πm

βh2

)k
]
(9)

(We recover Eq. 3 with the approximation lnN ! ∼
N lnN −N .) Eqs. 5, 8, and 9 together give us

P (E) =
β

Γ(k)
(βE)k−1e−βE . (10)

We now solve for W by invoking the quasi-static in-
variance of Φ(E;V ) [20, 21]. As discussed in similar con-
texts in Refs. [2, 12, 22, 23], since the gas continually
self-equilibrates, the value of Φ remains constant during
the process. From Eq. 7 we get Φ ∝ (V Ed/2)N , therefore
E1 = (V0/V1)2/dE0, which again leads to Eq. 6, only now
for arbitrary d > 1. Thus, using Eq. 10, we get

ρ(W ) =
∫

dE0 P (E0) δ(W − αE0) (11)

=
β

|α|Γ(k)

(
βW

α

)k−1

e−βW/α θ(αW ), (12)

where the unit step function θ guarantees that W has
the same sign as α. We see that ρ(W ) for adiabatic com-
pression (positive α), and ρ(−W ) for adiabatic expansion
(negative α), are gamma distributions with shape param-
eter k = dN/2 and scale s = |α|/β. These distributions
are illustrated in figure 2. Note that the work distribu-
tion depends on the ratio of the initial and final volumes
and not on the absolute volume.

Our result for ρ(W ) allows us to verify the fluctuation
theorem, Eq. 2. Let αF = (V0/V1)2/d − 1 and αR =
(V1/V0)2/d − 1 denote the values of α for the forward
(V0 → V1) and reverse (V1 → V0) processes. Note that
−αR/αF = (V1/V0)2/d, and α−1

F +α−1
R = −1. Combining

these identities with Eq. 12, we obtain

ρF(+W )
ρR(−W )

=
|αR|
|αF|

(
−αR

αF

)k−1

exp
[
−βW (α−1

F + α−1
R )

]
=

(
V1

V0

)N

eβW = eβ(W−∆F ),

where

∆F = F (β, V1)−F (β, V0) =
N

β
ln

V0

V1
=

1
β

dN

2
ln(1+α) ,

(13)
by Eqs. 6, 9. This confirms Eq. 2.

The validity of Eq. 1 follows immediately from
Eq. 2 [3], though it can also be verified by the direct
evaluation of

∫
ρ(W )e−βW dW . An alternative approach

is to use a cumulant expansion [1]:

ln
〈
e−βW

〉
=

∞∑
j=1

(−β)j ωj

j!
, (14)

where ωj is the j’th cumulant of ρ(W ). Using standard
properties of the gamma distribution [24], we get

ωj =
dN

2

(
α

β

)j

(j − 1)! (15)

hence

− ln
〈
e−βW

〉
= −dN

2

∞∑
j=1

(−α)j

j
=

dN

2
ln(1 + α), (16)

again confirming Eq. 1 for this model (see Eq. 13).
Truncating this expansion after two terms yields

∆F ≈ 〈W 〉 − β

2
σ2

W =
1
β

dN

2
(α− α2), (17)

where 〈W 〉 = ω1 and σ2
W = ω2 are the mean and variance

of ρ(W ). Eq. 17 is just the fluctuation-dissipation rela-
tion of linear response theory. Naively, we might expect
this to be an excellent approximation for our model, for
either of two reasons. First, we have assumed a quasi-
static process, apparently keeping the system in the near-
equilibrium regime where linear response theory ought to
apply. Second, for N � 1, the central limit theorem sug-
gests a Gaussian distribution of work values, and for a
Gaussian only the first two cumulants are non-zero. How-
ever, Eq. 13 reveals that the truncated expansion Eq. 17
is valid only when |α| � 1, that is, when V1 ≈ V0. Why
does the system not respond linearly for larger |α|?

First, Eq. 17 is valid for small excursions away from the
reversible, isothermal reference process described earlier.
In our adiabatic process, however, the kinetic tempera-
ture of the gas changes substantially, hence the system
strays far from the reference path, unless V1 ≈ V0 (From
Eq. 10 and E1 = αE0 it follows that the system ends
with a canonical distribution of energies at temperature
(V0/V1)2/dβ−1). Second, while ρ(W ) is nearly Gaussian
in the region around its mean, the average of exp(−βW )
is dominated by work values deep in the lower tail of the
distribution, where the central limit theorem does not
apply. Thus we cannot invoke the central limit theorem
to throw out the higher (j > 2) cumulants; indeed, the
relative sizes of the cumulants are independent of N .

Our results also illustrate the Clausius inequality,

〈W 〉 =
1
β

dN

2
α ≥ 1

β

dN

2
ln(1 + α) = ∆F, (18)

since α ≥ ln(1 + α) for all real α.
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Assuming many particles, the initial energy of the
gas is almost always very near to the equilibrium av-
erage energy, E = dN/2β, implying that the work per-
formed during a typical realization is W typ ≈ αE. [As
a consistency check, Eq. 12 verifies that the peak of
ρ(W ) occurs at αE + O(N0).] However, the average
of exp(−βW ) is dominated not by these typical real-
izations, but rather by those for which the work falls
near the peak of ρ(W ) exp(−βW ) [10, 25]. From Eq. 12
we find that this peak occurs at W dom ≈ αE/q, where
q = (V0/V1)2/d. Using Eq. 6 we conclude that the domi-
nant realizations are characterized by energies

Edom
0 ≈ 1

q
E , Edom

1 ≈ E. (19)

These are realizations during which the system begins
with a very atypical energy (E/q), but ends in a mi-
crostate that is characteristic of thermal equilibrium at
temperature β−1. This is a generic feature associated
with the convergence of 〈exp(−βW )〉 [25].

As a practical matter, it is often desirable to fit exper-
imental data to an appropriate probability distribution.
Where the work is smooth and unimodal the gamma dis-
tribution may be a reasonable parametric choice, since
it explicitly arises in this physical example, it obeys the
appropriate symmetries, and it can model the skew typ-
ical exhibited by work densities. Indeed in a recent ex-
periment, it was found that the work density could be
adequately fit to a Pearson type III distribution, which
is a gamma distribution generalized with a location pa-
rameter [26]. However, the gamma distribution is clearly
inadequate for this task in general, since the distribution
has a sharp lower bound. It has long been speculated that
the generalized Gumbel (aka generalized Fisher-Tippett)
distribution may provide a universal work distribution, in
the sense that the work density for many different process
may limit towards this general form.

P (x) =
aa

Γ(a)b
eab(x−s)+aeb(x−s)

(20)

Here, a, b and s are real parameters. This distribution
with positive integer ‘a’ arises in extreme value statis-
tics [27] and has been proposed as a general model of
non-equilibrium fluctuations [28, 29]. We originally spec-
ulated that this may be a plausible general distribution
for work densities since this is the maximum entropy dis-
tribution, from the location-scale family, given the mean
work and the mean Boltzmann weighted work (Eq. 1).
Moreover, it has recently been shown that the general-
ized Gumbel provides an excellent fit to work densities for
various alchemical transformations [30]. It is therefore in-
teresting to note that for small b the generalized Gumbel
approximates the generalized gamma distribution. Con-
sequentially, the results of this paper are compatible with
the universal distribution hypothesis.

In summary, this simple model of quasi-static, adia-
batic compression provides an interesting and valuable
example of a thermodynamic process for which the work
fluctuations can be computed exactly.
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