371 research outputs found

    Fourth Order Algorithms for Solving the Multivariable Langevin Equation and the Kramers Equation

    Get PDF
    We develop a fourth order simulation algorithm for solving the stochastic Langevin equation. The method consists of identifying solvable operators in the Fokker-Planck equation, factorizing the evolution operator for small time steps to fourth order and implementing the factorization process numerically. A key contribution of this work is to show how certain double commutators in the factorization process can be simulated in practice. The method is general, applicable to the multivariable case, and systematic, with known procedures for doing fourth order factorizations. The fourth order convergence of the resulting algorithm allowed very large time steps to be used. In simulating the Brownian dynamics of 121 Yukawa particles in two dimensions, the converged result of a first order algorithm can be obtained by using time steps 50 times as large. To further demostrate the versatility of our method, we derive two new classes of fourth order algorithms for solving the simpler Kramers equation without requiring the derivative of the force. The convergence of many fourth order algorithms for solving this equation are compared.Comment: 19 pages, 2 figure

    Reliability of reliability coefficients in the estimation of asymmetry

    Full text link
    Although promising to provide insight into the interaction between genotype and environment, investigations into fluctuating asymmetry suffer from a lack of standardization in the reporting of measurement error. In the present paper we show, using both anthropometric and odonto-metric data, that the use of the reliability coefficient calculated for a bilateral measurement provides no indication of the reliability of the corresponding asymmetry estimate, because reliability of asymmetry depends on the relationship between measurement error and the difference between sides. Thus, we suggest that future investigations either provide reliability coefficients for asymmetry estimates specifically, or use methods that account for measurement error. © 1995 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/37671/1/1330960109_ftp.pd

    Tuberculosis origin: The Neolithic scenario

    Get PDF
    This paper follows the dramatic changes in scientific research during the last 20 years regarding the relationship between the Mycobacterium tuberculosis complex and its hosts - bovids and/or humans. Once the M. tuberculosis and Mycobacterium bovis genomes were sequenced, it became obvious that the old story of M. bovis evolving into the human pathogen should be reversed, as M. tuberculosis is more ancestral than M. bovis. Nevertheless, the timescale and geographical origin remained an enigma. In the current study human and cattle bone samples were examined for evidence of tuberculosis from the site of Atlit-Yam in the Eastern Mediterranean, dating from 9250 to 8160 (calibrated) years ago. Strict precautions were used to prevent contamination in the DNA analysis, and independent centers used to confirm authenticity of findings. DNA from five M. tuberculosis genetic loci was detected and had characteristics consistent with extant genetic lineages. High performance liquid chromatography was used as an independent method of verification and it directly detected mycolic acid lipid biomarkers, specific for the M. tuberculosis complex. These, together with pathological changes detected in some of the bones, confirm the presence of the disease in the Levantine populations during the Pre-pottery Neolithic C period, more than 8000 years ago

    Detection and Molecular Characterization of 9000-Year-Old Mycobacterium tuberculosis from a Neolithic Settlement in the Eastern Mediterranean

    Get PDF
    Background: Mycobacterium tuberculosis is the principal etiologic agent of human tuberculosis. It has no environmental reservoir and is believed to have co-evolved with its host over millennia. This is supported by skeletal evidence of the disease in early humans, and inferred from M. tuberculosis genomic analysis. Direct examination of ancient human remains for M. tuberculosis biomarkers should aid our understanding of the nature of prehistoric tuberculosis and the host/pathogen relationship.Methodology/Principal Findings: We used conventional PCR to examine bone samples with typical tuberculosis lesions from a woman and infant, who were buried together in the now submerged site of Atlit-Yam in the Eastern Mediterranean, dating from 9250-8160 years ago. Rigorous precautions were taken to prevent contamination, and independent centers were used to confirm authenticity of findings. DNA from five M. tuberculosis genetic loci was detected and had characteristics consistent with extant genetic lineages. High performance liquid chromatography was used as an independent method of verification and it directly detected mycolic acid lipid biomarkers, specific for the M. tuberculosis complex.Conclusions/Significance: Human tuberculosis was confirmed by morphological and molecular methods in a population living in one of the first villages with evidence of agriculture and animal domestication. The widespread use of animals was not a source of infection but may have supported a denser human population that facilitated transmission of the tubercle bacillus. The similarity of the M. tuberculosis genetic signature with those of today gives support to the theory of a long-term co-existence of host and pathogen

    Neonate Human Remains: A Window of Opportunity to the Molecular Study of Ancient Syphilis

    Get PDF
    Ancient DNA (aDNA) analysis can be a useful tool in bacterial disease diagnosis in human remains. However, while the recovery of Mycobacterium spp. has been widely successful, several authors report unsuccessful results regarding ancient treponemal DNA, casting doubts on the usefulness of this technique for the diagnosis of ancient syphilis. Here, we present results from an analysis of four newborn specimens recovered from the crypt of “La Ermita de la Soledad” (XVI–XVII centuries), located in the province of Huelva in the southwest of Spain. We extracted and analyzed aDNA in three independent laboratories, following specific procedures generally practiced in the aDNA field, including cloning of the amplified DNA fragments and sequencing of several clones. This is the most ancient case, reported to date, from which detection of DNA from T. pallidum subspecies pallidum has been successful in more than one individual, and we put forward a hypothesis to explain this result, taking into account the course of the disease in neonate individuals

    Eighteenth-century genomes show that mixed infections were common at time of peak tuberculosis in Europe

    Get PDF
    Tuberculosis (TB) was once a major killer in Europe, but it is unclear how the strains and patterns of infection at 'peak TB' relate to what we see today. Here we describe 14 genome sequences of M. tuberculosis, representing 12 distinct genotypes, obtained from human remains from eighteenth-century Hungary using metagenomics. All our historic genotypes belong to M. tuberculosis Lineage 4. Bayesian phylogenetic dating, based on samples with well-documented dates, places the most recent common ancestor of this lineage in the late Roman period. We find that most bodies yielded more than one M. tuberculosis genotype and we document an intimate epidemiological link between infections in two long-dead individuals. Our results suggest that metagenomic approaches usefully inform detection and characterization of historical and contemporary infections

    NAD(P)H Quinone Oxidoreductase Protects TAp63γ from Proteasomal Degradation and Regulates TAp63γ-Dependent Growth Arrest

    Get PDF
    BACKGROUND: p63 is a member of the p53 transcription factor family. p63 is expressed from two promoters resulting in proteins with opposite functions: the transcriptionally active TAp63 and the dominant-negative DeltaNp63. Similar to p53, the TAp63 isoforms induce cell cycle arrest and apoptosis. The DeltaNp63 isoforms are dominant-negative variants opposing the activities of p53, TAp63 and TAp73. To avoid unnecessary cell death accompanied by proper response to stress, the expression of the p53 family members must be tightly regulated. NAD(P)H quinone oxidoreductase (NQO1) has recently been shown to interact with and inhibit the degradation of p53. Due to the structural similarities between p53 and p63, we were interested in studying the ability of wild-type and polymorphic, inactive NQO1 to interact with and stabilize p63. We focused on TAp63gamma, as it is the most potent transcription activator and it is expected to have a role in tumor suppression. PRINCIPAL FINDINGS: We show that TAp63gamma can be degraded by the 20S proteasomes. Wild-type but not polymorphic, inactive NQO1 physically interacts with TAp63gamma, stabilizes it and protects it from this degradation. NQO1-mediated TAp63gamma stabilization was especially prominent under stress. Accordingly, we found that downregulation of NQO1 inhibits TAp63gamma-dependant p21 upregulation and TAp63gamma-induced growth arrest stimulated by doxorubicin. CONCLUSIONS/SIGNIFICANCE: Our report is the first to identify this new mechanism demonstrating a physical and functional relationship between NQO1 and the most potent p63 isoform, TAp63gamma. These findings appoint a direct role for NQO1 in the regulation of TAp63gamma expression, especially following stress and may therefore have clinical implications for tumor development and therapy

    Bio-anthropological Studies on Human Skeletons from the 6th Century Tomb of Ancient Silla Kingdom in South Korea

    Get PDF
    In November and December 2013, unidentified human skeletal remains buried in a mokgwakmyo (a traditional wooden coffin) were unearthed while conducting an archaeological investigation near Gyeongju, which was the capital of the Silla Kingdom (57 BCE– 660 CE) of ancient Korea. The human skeletal remains were preserved in relatively intact condition. In an attempt to obtain biological information on the skeleton, physical anthropological, mitochondrial DNA, stable isotope and craniofacial analyses were carried out. The results indicated that the individual was a female from the Silla period, of 155 ± 5 cm height, who died in her late thirties. The maternal lineage belonged to the haplogroup F1b1a, typical for East Asia, and the diet had been more C3- (wheat, rice and potatoes) than C4-based (maize, millet and other tropical grains). Finally, the face of the individual was reconstructed utilizing the skull (restored from osseous fragments) and three-dimensional computerized modelling system. This study, applying multi-dimensional approaches within an overall bio-anthropological analysis, was the first attempt to collect holistic biological information on human skeletal remains dating to the Silla Kingdom period of ancient Korea
    corecore