1,933 research outputs found

    THE MORTALITY OF BACTERIOPHAGE CONTAINING ASSIMILATED RADIOACTIVE PHOSPHORUS

    Get PDF
    The bacteriophage T4 containing assimilated radioactive phosphorus is inactivated at a rate proportional to the specific radioactivity of the constituent phosphorus. The beta radiation from the phosphorus makes a negligible contribution to this effect. The inactivation is therefore a direct consequence of the nuclear reaction, which kills the phage with an efficiency of about 1/12. Several phages related to T4 behave similarly. When radioactive phage is grown from a seed of non-radioactive phage, all of the phage progeny are subject to killing by radioactive decay. The phage is killed by beta radiation from P32 with an efficiency of about 1/100 per ionization within the particle volume. Bacteriophage T4 and its relatives contain about 500,000 atoms of phosphorus per infective particle. Virtually all this phosphorus is adsorbed to bacteria with the specificity characteristic of the infective particles, and none of it can be removed from the particles by the enzyme desoxyribonuclease. The phosphorus content per particle, together with the published data on analytical composition, indicates a particle diameter close to 110 mĀµ for the varieties of phage studied

    NICMOS Imaging of a Damped Lyman-alpha Absorber at z=1.89 toward LBQS 1210+1731 : Constraints on Size and Star Formation Rate

    Get PDF
    We report results of a high-resolution imaging search (in rest frame H-Ī±\alpha and optical continuum) for the galaxy associated with the damped Lyman-Ī±\alpha (DLA) absorber at z=1.892z=1.892 toward the zem=2.543z_{em}=2.543 quasar LBQS 1210+1731, using HST/NICMOS. After PSF subtraction, a feature is seen in both the broad-band and narrow-band images, at a projected separation of 0.25\arcsec from the quasar. If associated with the DLA, the object would be ā‰ˆ2āˆ’3\approx 2-3 h70āˆ’1h_{70}^{-1} kpc in size with a flux of 9.8Ā±2.49.8 \pm 2.4 Ī¼\muJy in the F160W filter, implying a luminosity at Ī»central=5500\lambda_{central}=5500 {\AA} in the rest frame of 1.5Ɨ10101.5 \times 10^{10} h70āˆ’2h_{70}^{-2} LāŠ™_{\odot} at z=1.89z=1.89, for q0=0.5q_{0}=0.5. However, no significant H-Ī±\alpha emission is seen, suggesting a low star formation rate (SFR) (3 Ļƒ\sigma upper limit of 4.0 h70āˆ’2h_{70}^{-2} MāŠ™_{\odot} yrāˆ’1^{-1}), or very high dust obscuration. Alternatively, the object may be associated with the host galaxy of the quasar. H-band images obtained with the NICMOS camera 2 coronagraph show a much fainter structure ā‰ˆ4āˆ’5\approx 4-5 h70āˆ’1h_{70}^{-1} kpc in size and containing four knots of continuum emission, located 0.7\arcsec away from the quasar. We have probed regions far closer to the quasar sight-line than in most previous studies of high-redshift intervening DLAs. The two objects we report mark the closest detected high-redshift DLA candidates yet to any quasar sight line. If the features in our images are associated with the DLA, they suggest faint, compact, somewhat clumpy objects rather than large, well-formed proto-galactic disks or spheroids.Comment: 52 pages of text, 19 figures, To be published in Astrophysical Journal (accepted Dec. 8, 1999

    Large scale reactive additive manufacturing and what to expect when scaling up

    Get PDF
    Additive manufacturing as a whole offers tremendous savings in time and cost for rapid prototyping and tooling. At present there is a significant number of thermoplastic printers available from small-scale filament-based extrusion to large scale pellet-based extrusion. Thermosets have seen less growth and have been primarily limited to small scale research setups. Recently, a large-scale thermoset printer, the Reactive Additive Manufacturing (RAM) printer was developed (cf. Figure 1). This printer consists of an overall build volume of 450 ft3 and a gantry speed up to 50 in/s. The RAM system is also equipped with a modular pumping station capable of pumping feedstock material at pressures of 3000 psi in 5 or 55 gallon reservoirs. This work intends to reveal the challenges of working with a large scale Direct Ink Writing (DIW) process and how to overcome them. Two material chemistries have been scaled up for this system and are presented herein: a peroxide cured vinyl ester and latent cured epoxy-anhydrides. Factors such as pumpability, printability, and performance vary significantly between these systems and are discussed using rheological characterization, modeling, printing setup and parameters, and part design. Figure Please click Additional Files below to see the full abstract

    Enhancing neuroimaging genetics through meta-analysis for Tourette syndrome (ENIGMA-TS): A worldwide platform for collaboration

    Get PDF
    Tourette syndrome (TS) is characterized by multiple motor and vocal tics, and high-comorbidity rates with other neuropsychiatric disorders. Obsessive compulsive disorder (OCD), attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), major depressive disorder (MDD), and anxiety disorders (AXDs) are among the most prevalent TS comorbidities. To date, studies on TS brain structure and function have been limited in size with efforts mostly fragmented. This leads to low-statistical power, discordant results due to differences in approaches, and hinders the ability to stratify patients according to clinical parameters and investigate comorbidity patterns. Here, we present the scientific premise, perspectives, and key goals that have motivated the establishment of the Enhancing Neuroimaging Genetics through Meta-Analysis for TS (ENIGMA-TS) working group. The ENIGMA-TS working group is an international collaborative effort bringing together a large network of investigators who aim to understand brain structure and function in TS and dissect the underlying neurobiology that leads to observed comorbidity patterns and clinical heterogeneity. Previously collected TS neuroimaging data will be analyzed jointly and integrated with TS genomic data, as well as equivalently large and already existing studies of highly comorbid OCD, ADHD, ASD, MDD, and AXD. Our work highlights the power of collaborative efforts and transdiagnostic approaches, and points to the existence of different TS subtypes. ENIGMA-TS will offer large-scale, high-powered studies that will lead to important insights toward understanding brain structure and function and genetic effects in TS and related disorders, and the identification of biomarkers that could help inform improved clinical practice

    Longitudinal evaluation of cognitive functioning in young children with type 1 diabetes over 18 months

    Get PDF
    OBJECTIVE: Decrements in cognitive function may already be evident in young children with type 1 diabetes (T1D). Here we report prospectively acquired cognitive results over 18 months in a large cohort of young children with and without T1D. METHODS: 144 children with T1D (mean HbA1c: 7.9%) and 70 age-matched healthy controls (mean age both groups 8.5 years; median diabetes duration 3.9 yrs; mean age of onset 4.1 yrs) underwent neuropsychological testing at baseline and after 18-months of follow-up. We hypothesized that group differences observed at baseline would be more pronounced after 18 months, particularly in those T1D patients with greatest exposure to glycemic extremes. RESULTS: Cognitive domain scores did not differ between groups at the 18 month testing session and did not change differently between groups over the follow-up period. However, within the T1D group, a history of diabetic ketoacidosis (DKA) was correlated with lower Verbal IQ and greater hyperglycemia exposure (HbA1c area under the curve) was inversely correlated to executive functions test performance. In addition, those with a history of both types of exposure performed most poorly on measures of executive function. CONCLUSIONS: The subtle cognitive differences between T1D children and nondiabetic controls observed at baseline were not observed 18 months later. Within the T1D group, as at baseline, relationships between cognition (VIQ and executive functions) and glycemic variables (chronic hyperglycemia and DKA history) were evident. Continued longitudinal study of this T1D cohort and their carefully matched healthy comparison group is planned

    The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots

    Get PDF
    Despite often being conceptualized as a thin layer of soil around roots, the rhizosphere is actually a dynamic system of interacting processes. Hiltner originally defined the rhizosphere as the soil influenced by plant roots. However, soil physicists, chemists, microbiologists, and plant physiologists have studied the rhizosphere independently, and therefore conceptualized the rhizosphere in different ways and using contrasting terminology. Rather than research-specific conceptions of the rhizosphere, the authors propose a holistic rhizosphere encapsulating the following components: microbial community gradients, macroorganisms, mucigel, volumes of soil structure modification, and depletion or accumulation zones of nutrients, water, root exudates, volatiles, and gases. These rhizosphere components are the result of dynamic processes and understanding the integration of these processes will be necessary for future contributions to rhizosphere science based upon interdisciplinary collaborations. In this review, current knowledge of the rhizosphere is synthesized using this holistic perspective with a focus on integrating traditionally separated rhizosphere studies. The temporal dynamics of rhizosphere activities will also be considered, from annual fine root turnover to diurnal fluctuations of water and nutrient uptake. The latest empirical and computational methods are discussed in the context of rhizosphere integration. Clarification of rhizosphere semantics, a holistic model of the rhizosphere, examples of integration of rhizosphere studies across disciplines, and review of the latest rhizosphere methods will empower rhizosphere scientists from different disciplines to engage in the interdisciplinary collaborations needed to break new ground in truly understanding the rhizosphere and to apply this knowledge for practical guidance

    Unilateral vs. bilateral STN DBS effects on working memory and motor function in Parkinson disease

    Get PDF
    Bilateral subthalamic nucleus deep brain stimulation (STN DBS) can reduce working memory while improving motor function in Parkinson disease (PD), but findings are variable. One possible explanation for this variability is that the effects of bilateral STN DBS on working memory function depend in part on functional or disease asymmetry. The goal of this study was to determine the relative contributions of unilateral DBS to the effects seen with bilateral DBS. Motor (Unified Parkinson Disease Rating Scale Part III, UPDRS) and working memory function (Spatial Delayed Response, SDR) were measured in 49 PD patients with bilateral STN DBS while stimulators were Both-off, Left-on, Right-on and Both-on in a randomized, double-blind manner. Patients were off PD medications overnight. Effects of unilateral DBS were compared to effects of bilateral STN DBS. Mean UPDRS and SDR responses to Left-on vs. Right-on conditions did not differ (p>.20). However, improvement in contralateral UPDRS was greater and SDR performance was more impaired by unilateral DBS in the more affected side of the brain than in the less affected side of the brain (p=.008). The effect of unilateral DBS on the more affected side on contralateral UPDRS and SDR responses was equivalent to that of bilateral DBS. These results suggest that motor and working memory function respond to unilateral STN DBS differentially depending on the asymmetry of motor symptoms

    Overcoming status quo bias in the human brain

    Get PDF
    Humans often accept the status quo when faced with conflicting choice alternatives. However, it is unknown how neural pathways connecting cognition with action modulate this status quo acceptance. Here we developed a visual detection task in which subjects tended to favor the default when making difficult, but not easy, decisions. This bias was suboptimal in that more errors were made when the default was accepted. A selective increase in subthalamic nucleus (STN) activity was found when the status quo was rejected in the face of heightened decision difficulty. Analysis of effective connectivity showed that inferior frontal cortex, a region more active for difficult decisions, exerted an enhanced modulatory influence on the STN during switches away from the status quo. These data suggest that the neural circuits required to initiate controlled, nondefault actions are similar to those previously shown to mediate outright response suppression. We conclude that specific prefrontal-basal ganglia dynamics are involved in rejecting the default, a mechanism that may be important in a range of difficult choice scenarios
    • ā€¦
    corecore