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Abstract

Objectives: Decrements in cognitive function may already be evident in young children with type 1 diabetes (T1D).
Here we report prospectively acquired cognitive results over 18 months in a large cohort of young children with and
without T1D. Methods: A total of 144 children with T1D (mean HbA1c: 7.9%) and 70 age-matched healthy controls
(mean age both groups 8.5 years; median diabetes duration 3.9 years; mean age of onset 4.1 years) underwent
neuropsychological testing at baseline and after 18-months of follow-up. We hypothesized that group differences
observed at baseline would be more pronounced after 18 months, particularly in those T1D patients with greatest
exposure to glycemic extremes. Results: Cognitive domain scores did not differ between groups at the 18 month testing
session and did not change differently between groups over the follow-up period. However, within the T1D group, a
history of diabetic ketoacidosis (DKA) was correlated with lower Verbal IQ and greater hyperglycemia exposure (HbA1c
area under the curve) was inversely correlated to executive functions test performance. In addition, those with a history of
both types of exposure performed most poorly on measures of executive function. Conclusions: The subtle cognitive
differences between T1D children and nondiabetic controls observed at baseline were not observed 18 months later.
Within the T1D group, as at baseline, relationships between cognition (Verbal IQ and executive functions) and glycemic
variables (chronic hyperglycemia and DKA history) were evident. Continued longitudinal study of this T1D cohort and
their carefully matched healthy comparison group is planned. (JINS, 2016, 22, 293–302)

Keywords: Cognition, Early onset, T1D, Hyperglycemia, Longitudinal, Children

INTRODUCTION

Children with early onset diabetes (EOD; <5 years of age at
diagnosis) are more likely than those with later onset to have

poorer cognitive outcomes in the domains of IQ (Northam
et al., 1998; Rovet, Whelixh, & Hoppe, 1987), executive
functions (Bjorgaas, Gimse, Vik, & Sand, 1997; Flykanaka-
Gantenbein, 2004; Lin, Northam, Rankins, Werther, &
Cameron, 2010; Ly, Anderson, McNamara, Davis, & Jones,
2011), learning and memory (Gaudieri, Chen, Greer, &
Holmes, 2008; Lin et al., 2010), and processing speed
(Lin et al., 2010; Northam et al., 2001; Ryan, Vega, & Drash,
1985). One or more severe hypoglycemia episodes
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(with seizure or loss of consciousness) in childhood has also
been associated with poorer cognitive outcomes (Blasetti
et al., 2011; Hershey, Craft, Bhargaava, & White, 1997;
Hershey, Lillie, Sadler, & White, 2003, 2004; Hershey et al.,
2005; Lin et al., 2010; Naguib, Kulinskaya, Lomax, &
Garralda, 2009; Northam et al., 2001; Perantie et al., 2008;
Rovet & Ehrlich, 1999) and brain volume differences
(Ferguson et al., 2003; Haumont, Dorchy, & Pelc, 1979;
Hyllienmark, Maltez, Dandenell, Luvigsson, & Brismar,
2005; Musen et al., 2006; Northam et al., 2009; Perantie
et al., 2011, 2007; Perros, Deary, Sellar, Best, & Frier, 1997).
Chronic hyperglycemia may also interfere with brain

functioning and cognition. Greater hyperglycemia exposure
has been associated with differences in gray and white matter
volumes (Perantie et al., 2011, 2007), lower processing speed
(Jacobson et al., 2011), and lower verbal intelligence
(Perantie et al., 2008) in EOD boys only (Schoenle et al.,
2002). In our previously reported baseline analyses in the
same cohort as reported here, greater hyperglycemia before
the baseline evaluation was associated with differences in
gray matter volumes in frontal, temporal, and other posterior
cortical regions (Marzelli et al., 2014). Baseline neuroima-
ging also revealed widespread white matter differences in
T1D youth, more so in those with longer disease duration and
greater recent exposure to hyperglycemia (Barnea-Goraly
et al., 2014).
Investigators have speculated that there may also be

interactions between age and degree of exposure to glycemic
extremes, with the most vulnerable children being those
with early childhood onset of T1D and a history of
chronic hyperglycemia or severe hypoglycemia (Arbelaez,
Semenkovich, & Hershey, 2013). Some support for this
concept has come from a cross sectional analysis of school-age
children, demonstrating that early exposure to severe
hypoglycemia was associated with lower memory performance
(Hershey et al., 2005). In addition, there has been speculation
that early exposure to extreme glycemic states (e.g., DKA at
diagnosis) may predispose children to poor outcomes in the
case of subsequent prolonged and more severe dysglycemia
(e.g., chronic hyperglycemia, Ryan, 2006).
Cross-sectional studies, however, cannot adequately test

such complex hypotheses, control for baseline differences or
support causal inferences. Thus, prospective longitudinal
follow-up is necessary to understand the impact of various
degrees of glycemic exposure and their interactions with age.
Our ongoing longitudinal study of young children with and
without T1D aims to address this question using cognitive
and neuroimaging tools. We recently reported that young
children with T1D have a different developmental trajectory
over 18 months in gray and white matter volumes compared
to non-diabetic controls and that these differences strongly
correlated with the degree of hyperglycemia experienced
during an 18-month follow-up period. Specifically, T1D
youth had slower grey matter development in widespread
regions including left precuneus extending to left parietal and
occipital cortex and right frontal, temporal, and parietal lobes.
White matter growth was also slower across anterior, inferior

frontal, and superior parietal regions. The strongest effect on
white matter growth was observed in a right anterior frontal
region near the corpus callosum. Among T1D youth, greater
extent of overall disease-related exposure to hyperglycemia
related inversely to gray matter growth in widespread
regions. Higher glucose variability was also associated with
slower rates of growth across widespread grey and white
matter regions (Mauras et al., 2015).
In the same cohort at baseline, we reported subtle cognitive

differences between children (4 to <10 years old) with T1D
compared to healthy age-matched controls (Cato et al., 2014).
While the group differences did not meet stringent statistical
significance thresholds after adjusting for multiple compar-
isons and correction for parent IQ; child IQ and Executive
Functions domain scores trended lower in those with T1D
(both p = .02) (Cato et al., 2014). Furthermore, degree of
previous hyperglycemia (as measured by several indices
derived by HbA1c values and continuous glucose monitoring
[CGM] data) was associated with these differences (Cato
et al., 2014). Chronic hyperglycemia in T1D youth, indexed
by averaged A1c area under the curve (AUC) above 6.0% was
associated with lower IQ (p = .05). The percentage of time
blood glucose (BG) level exceeded 180mg/dL was associated
with a lower Executive Functions domain score (p = .04). The
next logical step, reported in this study, is to determine how
cognitive performance changes over time in T1D versus
controls and whether these changes correlate with glycemic
exposure during follow-up. In this ongoing, prospective,
well-controlled, large-scale longitudinal study we have a
unique opportunity to determine the timeframe, risk factors,
and effect of cumulative exposure to glycemic extremes
beginning in early childhood. We hypothesized that cognitive
differences between groups would become more clearly
pronounced over time. We also hypothesized that exposure to
dysglycemia and severe metabolic events [severe hypoglyce-
mia (SH), diabetic ketoacidosis (DKA)] during the follow-up
period would be associated with worse cognitive outcomes.

METHODS

All human data included in this manuscript were obtained
after institutional review approval at each of the participating
centers and informed written consent obtained from parents
or guardians and child assent when appropriate.

Participants

A total of 144 children with T1D and 72 non-diabetic con-
trols participated in the study at baseline (Cato et al., 2014).
From this cohort, all 144 children with T1D and 70 of the
non-diabetic participants completed at least a portion of the
18-month cognitive testing and follow-up. The T1D and
control groups had similar gender distributions, parental
education and family income levels. At 18-months
follow-up, average age was 8.5 years for both groups
(range, 5.4 to 11.5 years). The T1D cohort had a median
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duration of diabetes of 3.9 years, ranging from 1.6 to
9.5 years. Mean age of onset was 4.1 years (range, 0.9 to
8.0 years), with 67% (N = 97) diagnosed before age five.
A comprehensive summary of demographic characteristics of
each group was summarized in the baseline study. The T1D
and control groups had similar gender distributions, parent
education and income levels (Cato et al., 2014, Table 2).
Among children with T1D, 16% (n = 23) had a history of at
least one episode of severe hypoglycemia and 36% (n = 51)
had a history of DKA before the baseline study, while 4%
(n = 6) had at least one episode of severe hypoglycemia and
3% (n = 4) had a history of DKA between the baseline study
and the 18-month follow-up study.

Glycemic Control

Methods to ascertain glycemic control among the T1D par-
ticipants were previously described (Cato et al., 2014).
HbA1c values were collected every 3 months for the
18 months of the study. For participants using an unblinded
personal CGM as part of their diabetes care data were col-
lected every 3 months for the 18 months of the study.
Otherwise, participants were asked to use a blinded CGM
(iPro2®, Medtronic MiniMed, Northridge, CA or DexCom
SEVEN Plus®, DexCom, San Diego, CA) for 6 days every

3 months to collect at least 72 hr of CGM data with at least
24 hr of data overnight (10 p.m. to 6 a.m.).

Neurocognitive Testing

The neurocognitive testing methods have been previously
described in detail (Cato et al., 2014). Table 1 lists test battery
by domains assessed. In keeping with the literature, the
battery was selected to cover the cognitive domains of interest:
IQ, Executive Functions, Learning and Memory, and Proces-
sing Speed using age-appropriate measures. The assignment
of tasks to each cognitive domain was based on clinical
experience. At baseline, one of the parents completed an IQ
measure to be used as a planned covariate. Parent-reported
externalizing behavior, internalizing mood symptoms, and
executive functioning ratings were also obtained.
The same monitoring of BG concentrations was conducted

for the 18-month follow-up. Acceptable BG concentration
range was between 70 and 300mg/dL during testing. Ketones
were evaluated in cases of BG> 300mg/dL and if more than
trace urine ketones or blood ketones ≥ 0.6mmol/L were
present, testing was postponed. Testing was also suspended if
BG dropped below 70mg/dL. BG levels were checked
at least twice during the evaluation at regular, planned
intervals, by fingerstick on a home glucose meter. Test
protocols were double scored at a centralized location

Table 1. Neurocognitive test battery: Domains and measures

Cognitive domain Measurea Test Batteryb

IQ Scaled scoree Block design WPPSI-3/WASI
Scaled scoree Similarities
Scaled scoree Vocabulary
Scaled scoree Matrix reasoning

Executive Functions Detectability CPT-2 Connor’s
Total Correct Auditory Attn NEPSY-2
Total Correct Concept Formation WJ-3 Cognitive
Total Correct Numbers CMS

Learning and Memory Total items recalled Word Listsc CMS
Total items recalled Dot Locationsc CMS

Processing Speed Standard scored Visual Match I/II WJ-3 Cognitive
Decision Speed WJ-3 Cognitive

Mood/Behavior Measure Scale Battery
Executive Functioning Raw score Global Executive Composite BRIEF Parent
Externalizing symptoms T score Externalizing BASC-2 PRS
Internalizing symptoms T score Internalizing BASC-2 PRS
Covariate Measure Test Battery
Parent IQ Scaled scoree Vocabulary WASI

Scaled scoree Matrix Reasoning

aZ score was calculated for each measure using mean and SD from the current study pooling all participants (N = 216) at both baseline and 18 month visits. For
domains with more than one test, the average was taken giving equal weight to each z score.
bCMS = Children’s Memory Scale (Cohen, 1997); CPT-2 = Continuous Performance Test, Second Edition (Connors, 1994); NEPSY-2 = Neuropsychological
Battery for Children, Second Edition (Korkman, Kirk, & Kemp, 2007); WJ-3 Cognitive = Woodcock-Johnson Test of Cognitive Abilities, Third Edition
(Woodcock, McGrew, &Mather, 2001); WPPSI3 = Wechsler Preschool and Primary Scales of Intelligence, Third Edition (Wechsler, 2002); WASI = Wechsler
Adult Scale of Intelligence (Wechsler, 1999); BRIEF = Behavior Rating Inventory of Executive Functions (Gioia, Isquith, Guy, & Kenworthy, 2000); BASCII
PRS = Behavior Assessment System for Children, Second Edition Parent Rating Scales (Reynolds & Kamphaus, 2004).
cSame version given regardless of age.
dAge-based standard score from WJIII Cognitive normative update (NU) sample.
eAge-based scaled score derived from Wechsler normative sample.
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(Washington University in St. Louis), and the results were
analyzed at the DirecNet Coordinating Center (Jaeb Center
for Health Research, Tampa, FL). The median (interquartile
range) duration between baseline testing and 18 months
testing was 18 months with range 15 to 23 months.

Statistical Methods

Raw scores were transformed to Z scores for each measure
using mean and SD from the current study pooling all parti-
cipants (N = 216) at baseline and 18-months as described in
the prior paper reporting baseline cognitive results (Manschot
et al., 2006; van den Berg et al., 2010). Note that some
measures administered at baseline were given outside of
standardized range to maintain consistency across both
timepoints and age range (Cato et al., 2014). Domain scores
were omitted in participants who did not complete all sub-
domain measures. Supplementary Table 1 summarizes
source test scores for T1D and control participants used to
produce domain Z scores for cognition, behavior and mood.
Repeated measure least squares regression models were used
to account for the possibility that outcomes from siblings may
be correlated. These models compared children with T1D
versus those without on each of the domains and subdomain
measures adjusting for age, gender, and parent IQ. The
parent-reported child depression score obtained from the
BASC 2 PRS was used as an additional covariate for sub-
domain analyses as presence of depressive symptoms can
have a deleterious effect on cognition (Murrough, Iacoviello,
Neumeister, Charney, & Iosifescu, 2011).
Primary outcome domains were pre-defined as learning and

memory, executive functions, processing speed and IQ.
Secondary outcomes included parent ratings of executive
functioning, externalizing behavior symptoms and internaliz-
ing mood symptoms. For primary domains, the Hochberg step
up approach (Hochberg, 1988) was used to adjust the
threshold-defining statistical significance to account for
multiple comparisons. No formal correction for multiple
comparisons was made for the other secondary domains.
Within the T1D cohort, all glycated hemoglobin levels

since diagnosis, and those collected quarterly for 18-months,
were used to compute a life-long cumulative index of
hyperglycemia exposure based on average amount >6%
(HbA1CAUC6%) using the trapezoidal rule. Glycemic
variables from continuous glucose monitoring data included:
mean glucose (GluMean), percent time when glucose values
>180mg/dL, >250mg/dL, and <70mg/dL, standard devia-
tion (SD), and coefficient of variation (CV). CGM indices
were calculated from data downloads at the enrollment visit
and each of the follow-up visits every 3 months through
18 months. The average CGM indices across all 7 visits for
each participant were calculated giving equal weight to each
visit. Participants who had 4 or fewer visits with at least 48 hr
of CGM data were not included in the analyses. Other
diabetes-specific variables included age of onset, duration of
diabetes, number of severe hypoglycemia events and DKA
events. Spearman partial correlations were conducted

between these variables and each of the cognitive domains,
adjusting for age, gender, and parent IQ. Only p-values below
.01 were considered statistically significant.

RESULTS

Cross-sectional Data

Even though symptom improvement was noted over time, at
18 months T1D subjects still had significantly more inter-
nalizing mood symptoms (p = .002) than controls, replicat-
ing what was observed at baseline. None of the cognitive
domains were significantly different between the groups at
18 months (Figure 1).

Longitudinal Data

Both groups tended to improve on the cognitive testing as
expected with age but did not differ in degree of change over
18 months (Table 2). An inspection of within group changes
suggests the largest increase across both groups in learning
and memory, followed by executive functions. There was
also a modest differential increase in verbal IQ among the
T1D group. Level of internalizing mood symptoms improved
within the T1D group, although group differences remained
(see above).

Fig. 1. Estimated effect sizes for cognitive domains at 18 months.
The dot represents the point estimate and the width of the bars
represents a 99% confidence interval. The confidence intervals are
not otherwise corrected for multiple comparisons. For the domains
of Executive Functions, IQ, Learning and Memory, and
Processing Speed, effect sizes to the right of the vertical line
indicate that the control group scored higher. For BRIEF,
Externalizing and Internalizing domains, scores are reversed such
that effect sizes to the right of the vertical line indicate that the
control group had less symptoms.
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Relationship to Glycemic Variables

Mean HbA1c at the beginning and end of the study was 7.9%
(63mmol/mol). As measured by CGM data across the 7 visits
during the 18-month study, 50% of participants had glucose

levels >180mg/dL for >12 hr a day and >250mg for >6 hr a
day. Median time <70mg/dL was 66min per day and
<60mg/dL was 39min per day. Within the T1D group, CGM
measures did not correlate with change in cognitive domains
over 18 months (Table 3).

Table 2. Cognitive Outcomes Changes from Baseline to 18 Months

Changes (18 month–baseline)

T1D Control

N Mean± SD p-Valuea Mean± SD p-Valuea p-Valueb

Z- Scores
IQc 137/65 +0.27± 0.69 <.001 +0.13± 0.82 .21 .44
Verbal IQ 137/65 +0.22± 0.82 .002 +0.06± 0.98 .63 .46
Performance IQ 137/65 +0.16± 0.76 .02 +0.04± 0.78 .72 .89

Executive Functionsc 131/68 +0.77± 0.64 <.001 +0.65± 0.61 <.001 .68
Learning and Memoryc 137/66 +1.08± 0.65 <.001 +1.04± 0.66 <.001 .67
Processing Speedc 135/69 −0.10± 0.82 .14 −0.15± 0.86 .14 .50
BRIEF (Behavior Rating Inventory of Executive Function by Parent)d 140/67 −0.12± 0.82 .08 −0.21± 0.73 .02 .26
Externalizing (Behavior Assessment by Parent)d 142/68 −0.08± 0.84 .24 −0.03± 0.72 .71 .44
Internalizing (Behavior Assessment by Parent)d 142/67 −0.21± 0.77 .002 −0.04± 0.76 .68 .91

ap-values from paired t- test for within-group changes.
bNominal p-value uncorrected for multiple comparisons. Obtained from repeated measure least squares regression models, adjusted for baseline cognitive
scores, siblings from same family, age, gender, and parent IQ.
cPositive changes are better.
dPositive changes are worse.

Table 3. Spearman correlation between CGM indices and change in cognitive outcomes from baseline to 18 monthsa

IQ
Verbal
IQ

Performance
IQ

Executive
Functions

Learning and
Memory

Processing
Speed BRIEF Externalizing Internalizing

% Glucose in target range
(71–180mg/dL)
Spearman correlation +0.01 −0.10 +0.02 −0.15 −0.04 −0.09 +0.03 +0.06 −0.01
p-value .91 .30 .87 .10 .63 .35 .73 .47 .88
N 124 122 122 118 124 123 129 129 129

% Glucose in hypoglycemia
(<70mg/dL)
Spearman correlation +0.14 +0.05 +0.12 −0.00 +0.22 +0.01 −0.02 −0.11 −0.01
p-Value .12 .59 .18 .99 .01 .92 .84 .24 .94
N 124 122 122 118 124 123 129 129 129

% Glucose in hyperglycemia
(above 180mg/dL)
Spearman correlation −0.04 +0.07 −0.02 +0.14 −0.03 +0.08 −0.00 +0.00 +0.03
p-Value .68 .45 .81 .14 .74 .37 .97 .97 .77
N 124 122 122 118 124 123 129 129 129

Glucose coefficient of
variation (SD/mean)
Spearman correlation +0.15 +0.04 +0.16 +0.02 +0.19 −0.01 −0.02 −0.06 −0.06
p-Value .10 .69 .08 .86 .04 .95 .79 .52 .50
N 124 122 122 118 124 123 129 129 129

Mean glucose
Spearman correlation −0.04 +0.07 −0.02 +0.14 −0.02 +0.12 −0.02 +0.00 +0.04
p-Value .65 .48 .84 .13 .86 .20 .83 .96 .67
N 124 122 122 118 124 123 129 129 129

aCGM indices are averaged values from baseline to 18 month. Spearman partial correlation controlled for age at 18 month testing, gender, and parent IQ, not
adjusted for multiple comparisons.
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There were two moderate DKA events and two DKA
events with unknown severity in four individuals between
baseline and 18 months and no known severe DKA events
during this time period. Eight SH events occurred in six
participants between baseline and 18 months, and one
seizure/coma event. The number of SH events that occurred
during the study did not correlate with changes in cognitive
domains in 18 months (Table 4). At 18 months, Verbal IQ
negatively correlated with number of DKA events before
18 months (r = −.23; p = .009). Within the T1D group,
additional data trends were observed including an inverse
relationship between hyperglycemia (averaged A1c AUC
above 6.0%) and executive functions (r = −.19; p = .03),
and an inverse relationship between number of DKA events
before 18 months and IQ (r = −.17; p = .05) as well as
executive functions (r = −.20; p = .02). There was also an
inverse relationship between Performance IQ at 18 months
and history of SH events (r = −.19; p = .04) (see Table 5).
We performed additional exploratory sub-group analyses to

determine if there were any interaction effects on cognitive
outcomes for exposure to glycemic extremes at an early age
and subsequent dysglycemia exposure, as proposed by Ryan
(2006). As this analysis was exploratory, we selected two
cognitive variables: VIQ and a combination of the three
executive functioning measures that best discriminated among
T1D and non-T1D participants in our cohort at baseline. To
test Ryan’s hypothesis, we examined whether moderate/
severe DKA around the time of diagnosis would interact with
subsequent greater exposure to hyperglycemia (defined as
upper quartile in our T1D cohort for cumulative exposure) to
predict worse cognitive outcomes. Before examining the

impact of the combination of these risk factors, we looked at
each component separately within our T1D cohort.
Performance on executive functioning measures trended

lower for those T1D individuals (n = 32) with baseline history
of moderate to severe DKA (p = .03); mean differences were
also observed in this direction for VIQ but with p value of only
.09. Similarly, lower performance on executive functioning
measures (p = .02) was observed for those T1D individuals in
the upper quartile for hyperglycemia exposure, defined as A1c
AUC≥11.2. The direction of themeanswas for worst Verbal IQ
for T1D participants in upper quartile but the mean difference
was not significant (p = .12). Only nine participants experienced
both Severe/Moderate DKA at baseline and were in the upper
quartile of our T1D cohort for hyperglycemia exposure over the
18-month period (defined as A1CAUC≥11.2). By examination
of mean performances, the small number of children with this
combination of risk factors fared the worst on the executive
functions measures, consistent with Ryan’s hypothesis.
However, among those with moderate/severe DKA history
Verbal IQ was not worst for those T1D cases also in the upper
quartile hyperglycemia group.

DISCUSSION

Differences in cognitive function between children with and
without T1D did not worsen over the course of 18 months in
this longitudinal study. In addition, children with T1D did not
differ from controls in the rate of change in cognitive function
over 18 months. In fact, comparable improvements in per-
formance over time were seen in both groups. Practice effects

Table 4. Spearman correlation between diabetic history and cognitive outcomes changes from baseline to 18 monthsa

IQ
Verbal
IQ

Performance
IQ

Executive
Functions

Learning and
Memory

Processing
Speed BRIEF Externalizing Internalizing

Averaged A1c AUC above
6.0% in 18 months
Spearman correlation +0.09 +0.11 +0.07 +0.05 −0.05 +0.14 +0.04 −0.06 +0.01
p-Value .30 .21 .44 .58 .55 .12 .66 .52 .95
N 133 131 131 127 133 131 136 138 138

# of SevHypo events in
18 months
Spearman correlation +0.01 +0.07 −0.12 −0.13 +0.03 −0.03 −0.06 +0.07 +0.04
p-Value .89 .44 .16 .14 .73 .70 .47 .41 .68
N 133 131 131 127 133 131 136 138 138

Diabetes duration at
18 months
Spearman correlation −0.02 −0.02 −0.04 +0.04 +0.01 0.00 +0.06 −0.01 +0.09
p-Value .84 .86 .65 .68 .89 .99 .52 .90 .32
N 133 131 131 127 133 131 136 138 138

Age at onset (yrs)
Spearman correlation −0.02 0.00 −0.02 −0.05 +0.01 −0.05 −0.07 +0.03 −0.06
p-Value .79 .96 .79 .56 .94 .59 .40 .72 .50
N 133 131 131 127 133 131 136 138 138

aSpearman partial correlation controlled for age at 18 month testing, gender, and parent IQ, not adjusted for multiple comparisons.
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may have enhanced the rate of improvement over and above
underlying developmental processes but did not appear to
differentially affect the groups. Regression to the mean, the
tendency for most extreme scores to normalize toward
distribution center over time, may also have come into play.
Even so, group performances at 18 month follow-up were
similar and indicated comparable cognitive functioning
across groups. This contrasts with the significant differences
in gray and white matter regional volumes and overall brain
growth observed in this cohort as compared to controls
(Mauras et al., 2015).
This pattern of preserved cognitive function in the face of

structural growth differences between baseline and
18 months could suggest cerebral reserve in this young age
group. We know from other clinical populations that abnor-
mal changes in brain structure can precede clinical manifes-
tations. In Parkinson’s disease, it is well established that
depletion of dopaminergic cells in the substantia nigra must
reach a certain threshold before clinical problems are man-
ifest (Cato & Crosson, 2006). In multiple sclerosis, structural
and functional hippocampal changes have been observed
with intact memory function (Roosendaal et al., 2010). In
childhood epilepsy, children without impaired language
skills have been shown to have abnormal brain development
and reorganization of language-related brain regions (Caplan
et al., 2009). Hermann, Seidenberg, and Bell (2002) posit that
childhood onset temporal lobe epilepsy represents an early
acquired vulnerability that places patients at risk for
progressive cognitive decline, citing a reduction in cerebral
reserve over time in this chronic condition that has

established impact on both brain structures and function. In
the case of childhood onset T1D, long-term exposure to
dysglycemia may lead to sub-clinical neural changes that
accumulate until they become clinically relevant through
standardized cognitive and behavioral testing. Thus, the
possibility of delayed cognitive impact should be closely
monitored over time.
This is especially likely given what we already know about

cognition in childhood onset T1D and disease duration. In
several of the studies that report cognitive differences in T1D
patients with childhood onset disease, the cohorts were older
(teenagers) and/or had longer disease duration (Lin et al.,
2010; Northam, Anderson, Werther, Warne, & Andrewes,
1999; Perantie et al., 2008; Ryan et al., 1985). Specifically,
studies from the labs of E. Northam and T. Hershey, for
example, suggest that over longer disease duration, such as
12 years (Lin et al., 2010; Northam et al., 1999; Perantie
et al., 2008), risk factors of EOD, severe hypoglycemia, and
poor metabolic control (DKA and hyperglycemia) have an
additive and cumulative impact on cognition. Particularly in
the case of Verbal IQ and within the domain of Executive
Functions, long-term exposure to these risk factors are
associated with performance decrements relative to study
comparison groups.
In 2006, Ryan proposed that beyond duration of illness,

individuals with childhood onset T1D and a history of
chronic hyperglycemia, who then went on to experience
severe neuroglycopenia at any point thereafter may be parti-
cularly vulnerable to suffering cognitively. We similarly
explored this in our study and examined the interaction

Table 5. Spearman correlation between diabetic history and cognitive outcomes at 18 monthsa

IQ
Verbal
IQ

Performance
IQ

Executive
Functions

Learning and
Memory

Processing
Speed BRIEF Externalizing Internalizing

Averaged A1c AUC above
6.0%
Spearman correlation −0.13 −0.09 −0.08 −0.19 −0.01 +0.13 +0.10 +0.08 +0.13
p-Value 0.15 0.31 0.36 0.03 0.92 0.13 0.25 0.38 0.13
N 133 131 131 134 135 135 140 138 138

# of SevHypo events
Spearman correlation −0.14 −0.06 −0.19 −0.06 −0.08 +0.06 −0.04 −0.00 +0.01
p-Value 0.12 0.52 0.04 0.51 0.34 0.48 0.63 0.96 0.90
N 133 131 131 134 135 135 140 138 138

# of DKA eventsb

Spearman correlation −0.17 −0.23 −0.04 −0.20 −0.07 −0.14 +0.07 −0.03 +0.01
p-Value 0.05 0.009 0.63 0.02 0.44 0.12 0.40 0.75 0.91
N 131 129 129 133 133 133 138 136 136

Diabetes Duration
Spearman correlation +0.03 +0.04 −0.02 +0.02 −0.08 +0.03 −0.05 −0.01 −0.04
p-Value 0.69 0.64 0.79 0.82 0.36 0.71 0.59 0.91 0.65
N 133 131 131 134 135 135 140 138 138

Age at onset (yrs)
Spearman correlation −0.07 −0.05 −0.02 −0.03 +0.13 −0.11 +0.02 −0.02 +0.04
p-Value 0.46 0.57 0.85 0.76 0.14 0.23 0.81 0.85 0.68
N 133 131 131 134 135 135 140 138 138

aSpearman partial correlation controlled for age at 18 month testing, gender and parent IQ, not adjusted for multiple comparisons.
bExcluded 2 subjects with unknown DKA status.
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between history of moderate to severe DKA around the time
of diagnosis and subsequent exposure to a high degree of
chronic hyperglycemia over 18 months. We operationalized
highest exposure to cumulative hyperglycemia as upper
quartile of A1c AUC at 18 months. Consistent with Ryan’s
hypothesis, we found that those who performed lowest on
executive functioning measures was the subgroup of T1D
children with a history of DKA at diagnosis and greatest
cumulative exposure to hyperglycemia.
Within the adult literature, Nunley et al. (2015) found that

among middle-aged adult cases with history of childhood
onset T1D, individuals with over a 14-year history of average
A1c> 7.5%, demonstrated clinically relevant cognitive
impairment [odds ratio (OR) of 3.0]. Clinically relevant white
matter hyperintensities were also observed earlier relative to
non-T1D controls in middle-aged patients with childhood
onset T1D (Nunley et al., 2015). In a similar vein, (Weinstein
et al., 2015) reported that in a cohort of 1497 middle-aged
participants, diabetes and higher fasting BG were associated
with worse scores on cognitive measures, increased rate of
white matter hyperintensities and reductions in gray matter
densities and white matter integrity (measured by fractional
anisotropy). The issue of duration of illness and compound-
ing insults warrants additional investigation.
In this study, few patients evidenced new severe

hypoglycemia or DKA events over the 18 month period. This
may have underestimated the effect that either may have on
cognitive course. Indeed there were only four total DKA
events in four individuals between baseline and 18 months,
none of which were classified as severe. Only eight SH events
(only one with seizure/coma) occurred in six participants
(4%) between baseline and 18 months. In contrast, during the
12-year follow-up study by Northam and colleagues, 44% of
the type 1 diabetes group had one or more episodes of severe
hypoglycemia with seizure/coma (Lin et al., 2010; Northam
et al., 2009). From these prior papers, we know that severe
hypoglycemia can have an adverse impact on verbal ability,
working memory and processing speed.
Further limiting our study is the possibility that our

measures may not have been sufficiently sensitive. Most of
the cognitive measures were the same used at baseline. Our
T1D cohort is comprised of bright young children (average
VIQbaseline = 108; average PIQbaseline = 109) from edu-
cated parents (% parents postgraduate at baseline = 38%)
with high socioeconomic status (% ≥100K = 36%) for
whom test selection for subsequent time points has centered
on avoiding ceiling effects. Given our high functioning
groups, the lack of group differences could in part be
explained by excessive practice effects and near-ceiling
effects. To address these concerns, for timepoints 3 and 4
(both funded and underway), we have selected several alter-
native measures within the same domains.
Although we do not see clear group differences in our data

at this time, given what we know about cognition in child-
hood onset T1D following longer disease duration, it is likely
that as we continue to study this cohort over time, group
differences will emerge or subgroup differences will be more

clearly evident. Continued study of this cohort will clarify to
what extent persistent exposure to diabetes, dysglycemia, and
regional brain changes lead to measurable cognitive differ-
ences and whether these differences equate to clinically
meaningful deficits. In particular, we will continue to exam-
ine impact of prolonged exposure to hyperglycemia over
time. Recent findings in the adult literature combined with
our findings provide a clear message that more scrupulous
control to guard against prolonged exposure to hyperglyce-
mia is needed, especially for those most vulnerable (those
with early childhood onset T1D).

ACKNOWLEDGMENTS

The authors thank the children and their families as well as the
clinical and imaging staff at all of the investigator sites. We also
thank our external collaborators for use of their imaging facilities,
including University of California at San Francisco, El Camino
Hospital, and University of Florida & Shands Jacksonville. We are
also grateful to Karen Winer, MD, and Ellen Leschek, MD, at
NIDDK for advice and support. This research was supported by
funding from the NIH (DIRECNET R01 HD078463 U01
HD41890, HD41906-10, HD41908-10, HD41915, HD41918,
HD56526) and UL1 RR024992. A. Cato, N. Mauras, P. Mazaika, C.
Kollman, P. Cheng, T. Aye, J. Ambrosino, R. Beck, K. Ruedy, A.
Reiss, M. Tansey, and T. Hershey report no conflict of interest. N.H.
White reports receiving payment for consultancy from Novo
Nordisk and Daiichi Sankyo and payments to his institution from
Bristol-Myers Squibb for a research grant. The DirecNet Study
Group: Clinical Centers: (Personnel are listed as (PI) for Principal
Investigator, (I) for co-Investigator, (C) for Coordinators, and (PM)
for Psychometrician.) Department of Pediatrics, University of
Iowa Carver College of Medicine, Iowa City, IA: Eva Tsalikian,
MD (PI); Michael J. Tansey, MD (I); Julie Coffey, MSN (C); Joanne
Cabbage (C); Sara Salamati (C); Amy Conrad, PhD (PM);Nemours
Children’s Health System, Jacksonville, FL: Nelly Mauras, MD
(PI); Larry A. Fox, MD (I); Allison Cato, PhD (I); Kim Englert, RN,
BSN, CDE (C); Kaitlin Sikes, ARNP, MSN (C); Tina Ewen (C);
Division of Pediatrics Endocrinology and Diabetes, Stanford
University, Stanford, CA: Bruce A. Buckingham, MD (PI); Darrell
M. Wilson, MD (I); Tandy Aye, MD (I); Kimberly Caswell, ARNP
(C); Kristin Schleifer (PM); Christian Ambler (PM);Department of
Pediatrics, Yale University School of Medicine, NewHaven, CT:
Stuart A. Weinzimer, MD (PI); William V. Tamborlane, MD (I);
Amy Steffen, BS (C); Kate Weyman, MSN (C); Melinda Zgorski,
BSN (C); Jodie Ambrosino, PhD (I); Washington University in
St. Louis, St. Louis, MO: Neil H.White, MD, CDE (PI); AnaMaria
Arbelaez, MD, (I); Lucy Levandoski, PA-C (C); Angie Starnes, RN,
BSN, CDE (C), Tamara Hershey, PhD (I). Coordinating Center:
Jaeb Center for Health Research, Tampa, FL: Roy W. Beck, MD,
PhD; Katrina J. Ruedy, MSPH; Craig Kollman, PhD; Peiyao Cheng,
MPH; Beth Stevens; Nelly Njeru; Ryan Chapman, TJ Mouse.
Image Coordinating Center: Allan L. Reiss, MD; Naama Barnea-
Goraly, MD; Matthew J. Marzelli, BS; Paul M. Mazaika, PhD;
Daniel X. Peng, BS.Cognitive Core: Tamara Hershey, PhD; Allison
Cato, PhD; Emily Bihun, MA; Amal Al-Lozi, BA; Allison Bischoff,
BA; Michaela Cuneo, BA; Aiden Bondurant, BA. Data and Safety
Monitoring Board: Mark Sperling, MD; Dorothy M. Becker,
MBBCh; Patricia Cleary, MS; Carla Greenbaum, MD; Antoinette
Moran, MD.

300 M.A. Cato et al.



Supplementary material

To view supplementary material for this article, please visit http://
dx.doi.org/10.1017/S1355617715001289

REFERENCES

Arbelaez, A.M., Semenkovich, K., & Hershey, T. (2013). Glycemic
extremes in youth with T1DM: The structural and functional
integrity of the developing brain. Pediatric Diabetes, 14(8),
541–553.

Barnea-Goraly, N., Raman, M., Mazaika, P., Marzelli, M., Hershey, T.,
& Weinzimer, S.A., for the Diabetes Research in Children Network
(2014). Alterations in white matter structure in young children with
type 1 diabetes. Diabetes Care, 37(2), 332–340.

Bjorgaas, M., Gimse, R., Vik, T., & Sand, T. (1997). Cognitive
function in type 1 diabetic children with and without episodes of
severe hypoglycaemia. Acta Paediatrica, 86, 148–153.

Blasetti, A., Chiuri, R.M., Tocco, A.M., Giulio, C.D., Mattei, P.A.,
Ballone, E., …Verrotti, A. (2011). The Effect of recurrent severe
hypoglycemia on cognitive performance in children with type 1
diabetes: A meta-analysis. Journal of Child Neurology, 26(11),
1383–1391.

Caplan, R., Siddarth, P., Vona, P., Stahl, L., Bailey, C., Gurbani, S.,
… Donald Shields, W. (2009). Language in pediatric epilepsy.
Epilepsia, 50(11), 2397–2407.

Cato, M.A., & Crosson, B. (2006). Stable and slowly progressive
dementias. In D. K. Attix & K Welsh-Bohmer (Eds.), Geriatric
neuropsychological assessment and intervention (pp. 89–102).
New York: Guilford Publications.

Cato, M.A., Mauras, N., Ambrosino, J., Bondurant, A., Conrad, A.L.,
Kollman, C., …Hershey, T. (2014). Cognitive functioning in young
children with type 1 diabetes. Journal of the International
Neuropsychological Society, 20(2), 238–247.

Cohen, M.J. (1997). CMS: Children’s memory scale. San Antonio,
TX: The Psychological Corporation.

Connors, C.K. (1994). CPT: The Conners Continuous Performance
Test. Toronto, Canada: Multi-Health Systems.

Ferguson, S.C., Blane, A., Perros, P., McCrimmon, R.J., Best, J.J.,
Wardlaw, J., … Frier, B.M. (2003). Cognitive ability and brain
structure in type 1 diabetes: Relation to microangiopathy and
preceding severe hypoglycemia. Diabetes, 52, 149–156.

Flykanaka-Gantenbein, C. (2004). Hypoglycemia in childhood:
Long-term effects. Pediatric Endocrinology Reviews, 1(Suppl. 3),
530–536.

Gaudieri, P.A., Chen, R., Greer, T.F., & Holmes, C.S. (2008).
Cognitive function in children with type 1 diabetes: A meta-
analysis. Diabetes Care, 31(9), 1892–1897.

Gioia, G.A., Isquith, P.K., Guy, S.C., & Kenworthy, L. (2000).
Behavior rating inventory of executive function. Lutz, FL: PAR, Inc.

Haumont, D., Dorchy, H., & Pelc, S. (1979). EEG abnormalities in
diabetic children: Influence of hypoglycemia and vascular
complications. Clinical Pediatrics, 18, 750–753.

Hermann, B.P., Seidenberg, M., & Bell, B. (2002). The neurode-
velopmental impact of childhood onset temporal lobe epilepsy on
brain structure and function and the risk of progressive cognitive
effects. Progress in Brain Research, 135, 429–438.

Hershey, T., Craft, S., Bhargava, N., & White, N.H. (1997).
Memory and Insulin Dependent Diabetes Mellitus (IDDM):
Effects of childhood onset and severe hypoglycemia. Journal of
the International Neuropsychological Society, 3(6), 509–520.

Hershey, T., Lillie, R., Sadler, M., & White, N.H. (2003). Severe
hypoglycemia and long-term spatial memory in children with
type 1 diabetes mellitus: A retrospective study. Journal of the
International Neuropsychological Society, 9(5), 740–750.

Hershey, T., Lillie, R., Sadler, M., & White, N.H. (2004).
A prospective study of severe hypoglycemia and long-term
spatial memory in children with type 1 diabetes. Pediatric
Diabetes, 5, 63–71.

Hershey, T., Perantie, D.C., Warren, S.L., Zimmerman, E.C.,
Sadler, M., & White, N.H. (2005). Frequency and timing of
severe hypoglycemia affects spatial memory in children with type
1 diabetes. Diabetes Care, 10, 2372–2377.

Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple
tests of significance. Biometrika, 75, 800–802.

Hyllienmark, L., Maltez, J., Dandenell, A., Luvigsson, J., &
Brismar, T. (2005). EEG abnormalities with and without relation
to severe hypoglycemi in adolescents with type 1 diabetes.
Diabetologia, 48, 412–419.

Jacobson, A.M., Ryan, C.M., Cleary, P.A., Waberski, B.H.,
Weinger, K., & Musen, G., Diabetes Control and Complications
Trial/EDIC Research Group (2011). Biomedical risk factors for
decreased cognitive functioning in type 1 diabetes: An 18 year
follow-up of the Diabetes Control and Complications Trial
(DCCT) cohort. Diabetologia, 54(2), 245–255.

Korkman, M., Kirk, U., & Kemp, S. (2007). NEPSY-II:
Neuropsychological battery for children (2nd ed.). San Antonio,
TX: Harcourt Assessment.

Lin, A., Northam, E.A., Rankins, D., Werther, G.A., & Cameron, F.J.
(2010). Neuropsychological profiles of young people with
type 1 diabetes 12 yr after disease onset. Pediatric Diabetes, 11,
235–243.

Ly, T.T., Anderson,M.,McNamara, K.A., Davis, E.A., & Jones, T.W.
(2011). Neurocognitive outcomes in young adults with
early-onset type 1 diabetes: A prospective follow-up study.
Diabetes Care, 34(10), 2192–2197.

Manschot, S.M., Brands, A.M.A., van der Grond, J., Kessels, R.P.C.,
Algra, A., Kappelle, L.J., … Biessels, G.J. (2006). Brain magnetic
resonance imaging correlates of impaired cognition in patients with
type 2 diabetes. Diabetes, 55(4), 1106–1113.

Marzelli, M.J., Mazaika, P.K., Barnea-Goraly, N., Hershey, T.,
Tsalikian, E., & Tamborlane, W., for the Diabetes Research in
Children Network (2014). Neuroanatomical correlates of
dysglycemia in young children with type 1 diabetes. Diabetes,
63(1), 343–353.

Mauras, N., Mazaika, P., Buckingham, B., Weinzimer, S.,
White, N.H., & Tsalikian, E., Diabetes Research in Children
Network (DirecNet) (2015). Longitudinal assessment of neuro-
anatomical and cognitive differences in young children with type
1 diabetes: Association with hyperglycemia. Diabetes, 64(5),
1770–1779.

Murrough, J.W., Iacoviello, B., Neumeister, A., Charney, D.S., &
Iosifescu, D.V. (2011). Cognitive dysfunction in depression:
Neurocircuitry and new therapeutic strategies. Neurobiology of
Learning and Memory, 96(4), 553–563.

Musen, G., Lyoo, I.K., Sparks, C.R., Weinger, K., Hwang, J.,
Ryan, C.M., … Jacobson, A.M. (2006). Effects of type 1 diabetes
on gray matter density as measured by voxel-based morphometry.
Diabetes, 55, 326–333.

Naguib, J.M., Kulinskaya, E., Lomax, C.L., & Garralda, M.E.
(2009). Neuro-cognitive performance in children with type 1
diabetes- A meta-analysis. Journal of Pediatric Psychology,
34(3), 271–282.

Cognitive development in T1D youth 301



Northam, E.A., Anderson, P.J., Jacobs, R., Hughes, M., Warne, G.L.,
& Werther, G.A. (2001). Neuropsychological profiles of children
with type 1 diabetes 6 years after disease onset.Diabetes Care, 24,
1541–1546.

Northam, E.A., Anderson, P.J.,Werther, G.A.,Warne, G.L., Adler, R.G.,
& Andrewes, D. (1998). Neuropsychological complications of IDDM
in children 2 years after disease onset. Diabetes Care, 21, 379–384.

Northam, E.A., Anderson, P.J., Werther, G.A., Warne, G.L., &
Andrewes, D. (1999). Predictors of change in the neuropsycho-
logical profiles of children with type 1 diabetes 2 years after
disease onset. Diabetes Care, 22, 1438–1444.

Northam, E.A., Rankins, D., Lin, A., Wellard, R.M., Pell, G.S.,
Finch, S.J., … Cameron, F.J. (2009). Central nervous system
function in youth with type 1 diabetes 12 years after disease onset.
Diabetes Care, 32(3), 445–450.

Nunley, K.A., Ryan, C.M., Orchard, T.J., Aizenstein, H.J.,
Jennings, J.R., Ryan, J., … Rosano, C. (2015). White matter
hyperintensities in middle-aged adults with childhood-onset type
1 diabetes. Neurology, 84(20), 2062–2069.

Perantie, D.C., Koller, J.M., Weaver, P.M., Lugar, H.M.,
Black, K.J., White, N.H., … Hershey, T. (2011). Prospectively
determined impact of type 1 diabetes on brain volume during
development. Diabetes, 60(11), 3006–3014.

Perantie, D.C., Lim, A., Wu, J., Weaver, P., Warren, S.L.,
Sadler, M., … Hershey, T. (2008). Effects of prior hypoglycemia
and hyperglycemia on cognition in children with type 1 diabetes
mellitus. Pediatric Diabetes, 9(2), 87–95.

Perantie, D.C., Wu, J., Koller, J.M., Lim, A., Warren, S.L., Black, K.J.,
… Hershey, T. (2007). Regional brain volume differences associated
with hyperglycemia and severe hypoglycemia in youth with type 1
diabetes. Diabetes Care, 30(9), 2331–2337.

Perros, P., Deary, I.J., Sellar, R.J., Best, J.J., & Frier, B.M. (1997). Brain
abnormalities demonstrated by magnetic resonance imaging in adult
IDDM patients with and without a history of recurrent severe
hypoglycemia. Diabetes Care, 20, 1013–1018.

Reynolds, C.R., & Kamphaus, R.W. (2004). Behavior assessment
system for children, second edition parent rating scales. Circle
Pines, MN: American Guidance Service.

Roosendaal, S.D., Hulst, H.E., Vrenken, H., Feenstra, H.E.M.,
Castelijns, J.A., Pouwels, P.J.W., … Geurts, J.J.G.
(2010). Structural and functional hippocampal changes in multiple
sclerosis patients with intact memory function. Radiology, 255(2),
595–604.

Rovet, J.F., & Ehrlich, R.M. (1999). The effect of hypoglycemic
seizures on cognitive function in children with diabetes:
A 7-year prospective study. Journal of Pediatrics, 134(4),
503–506.

Rovet, J.F., Ehrlich, R.M., & Hoppe, M. (1987). Intellectual deficits
associated with early onset of insulin-dependent diabetes mellitus
in children. Diabetes Care, 10(4), 510–515.

Ryan, C., Vega, A., &Drash, A. (1985). Cognitive deficits in adolescents
who developed diabetes early in life. Pediatrics, 75, 921–927.

Ryan, C.M. (2006). Why is cognitive dysfunction associated with
the development of diabetes early in life? The diathesis
hypothesis. Pediatric Diabetes, 7(5), 289–297.

Schoenle, E.J., Schoenle, D., Molinari, L.,Molinari, L., & Largo, R.H.
(2002). Impaired intellectual development in children with Type I
diabetes: Association with HbA(1c), age at diagnosis and sex.
Diabetologia, 45(1), 108–114.

van den Berg, E., Reijmer, Y.D., de Bresser, J., Kessels, R.P.C.,
Kappelle, L.J., & Biessels, G.J., Utrecht Diabetic Encephalopathy
Study Group (2010). A 4 year follow-up study of cognitive
functioning in patients with type 2 diabetes mellitus. Diabeto-
logia, 53(1), 58–65.

Wechsler, D. (1999). Wechsler Abbreviated Scale of Intelligence.
New York, NY: The Psychological Corporation: Harcourt Brace
& Company.

Wechsler, D. (2002). Wechsler preschool and primary scale of
intelligence (3rd ed.). San Antonio, TX: Psychological Corporation.

Weinstein, G., Maillard, P., Himali, J.J., Beiser, A.S., Au, R.,
Wolf, P.A., …DeCarli, C. (2015). Glucose indices are associated
with cognitive and structural brain measures in young adults.
Neurology, 84(23), 2329–2337.

Woodcock, R.W., McGrew, K.S., & Mather, N. (2001).Woodcock-
Johnson test of cognitive abilites (3rd ed.). Itasca, IL: Riverside
Publishing.

302 M.A. Cato et al.


	Washington University School of Medicine
	Digital Commons@Becker
	2016

	Longitudinal evaluation of cognitive functioning in young children with type 1 diabetes over 18 months
	M. Allison Cato
	Nelly Mauras
	Paul Mazaika
	Craig Kollman
	Peiyao Cheng
	See next page for additional authors
	Recommended Citation
	Authors


	tmp.1458596698.pdf.4H56H

