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Abstract 

Objectives:  The effects of subthalamic nucleus (STN) deep brain stimulation (DBS) on gait and balance 

vary and the underlying mechanisms remain unclear.  DBS location may alter motor benefit due to 

anatomical heterogeneity in STN.  The purposes of this study were to (1) compare effects of DBS of 

dorsal (D-STN) versus ventral (V-STN) regions on gait, balance and regional cerebral blood flow (rCBF) 

and (2) examine relationships between changes in rCBF and changes in gait and balance induced by D-

STN or V-STN DBS.  Methods:  We used a validated atlas registration to locate and stimulate through 

electrode contacts in D-STN and V-STN regions of 37 people with Parkinson disease.  In a within-

subjects, double-blind and counterbalanced design controlled for DBS settings, we measured PET rCBF 

responses in a priori regions of interest and quantified gait and balance during DBS Off, unilateral D-STN 

DBS and unilateral V-STN DBS.  Results:  DBS of either site increased stride length without producing 

significant group-level changes in gait velocity, cadence or balance.  Both sites increased rCBF in 

subcortical regions and produced variable changes in cortical and cerebellar regions.  DBS-induced 

changes in gait velocity related to premotor cortex rCBF changes during V-STN DBS (r = –0.40, p = 0.03) 

and to rCBF changes in the cerebellum anterior lobe during D-STN DBS (r = -0.43, p = 0.02).  Conclusions:  

DBS-induced changes in gait corresponded to rCBF responses in selected cortical and cerebellar regions.  

These relationships differed during D-STN versus V-STN DBS, suggesting DBS acts through distinct 

neuronal pathways dependent on DBS location. 

 

Keywords:  deep brain stimulation; gait; positron emission tomography; Parkinson disease; 

subthalamic nucleus 
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Introduction 

Reductions in gait velocity and stride length characterize the postural instability and gait 

disturbances common in idiopathic Parkinson disease (PD) [Ferrandez and Blin 1991].  Deep brain 

stimulation of the subthalamic nucleus (STN DBS) improves gait and balance in some individuals with PD 

[Faist et al. 2001;Nilsson et al. 2009] yet its mechanisms of action remain unclear.  Understanding the 

mechanisms underlying response variability may provide insights into the neural control of gait and 

balance and the functional anatomy of the STN. 

One key factor contributing to response variability may be stimulation of different anatomic 

sites in the STN region.  Investigations of STN circuitry in non-human primates reveal distinct regions 

with potentially disparate functions.  The dorsolateral STN region connects to sensorimotor areas of the 

basal ganglia and to motor cortical areas while the ventral STN region connects to higher order cortical 

regions subserving cognitive functions [Parent and Hazrati 1995]; in vivo magnetic resonance imaging 

techniques may confirm this in humans[Lambert et al. 2012b].  Electrode contact location along the 

typical dorsolateral to ventromedial surgical implantation trajectory through the STN region may 

therefore influence the clinical effects of DBS.  In support of this hypothesis, unilateral stimulation of the 

ventral STN region (V-STN DBS) impaired response inhibition performance in individuals with PD more 

than stimulation of the dorsal STN region (D-STN DBS) [Hershey et al. 2010] .  On the other hand, the 

influence of contact location on gait and balance remains unclear: D-STN stimulation [Johnsen et al. 

2010]  or V-STN stimulation [Hilliard et al. 2011] may be optimal, or either location may be equally 

effective for improving gait and balance [McNeely et al. 2011]. 

Neuroimaging can identify pathways activated by DBS [Ballanger et al. 2009;Hershey et al. 

2003;Perlmutter et al. 2002] and the responses in these pathways subsequently correlated with 

behavioral responses [Campbell et al. 2008;Karimi et al. 2008].  Stimulation of different STN regions 
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could activate distinct downstream cortical and cerebellar areas dependent upon different anatomic 

connections.  Therefore, comparing regional cerebral blood flow (rCBF) responses during D-STN versus 

V-STN DBS and evaluating any relationships between rCBF and motor responses may provide further 

insights into the functional anatomy of the STN.  These comparisons may help to determine which 

circuits subserve motor functions and to explain the variability of motor responses to STN DBS. 

Thus the purposes of this study were to compare the effects of D-STN versus V-STN DBS on gait, 

balance and rCBF and then determine the relationships between motor performance and rCBF 

responses.  To achieve these goals, we employed a validated process to locate [Videen et al. 2008] and 

selectively stimulate through electrode contacts in the D-STN and V-STN regions.  In our within-subjects, 

double-blind and counterbalanced design controlled for stimulation variables (voltage, pulse width, 

frequency) we measured rCBF responses (PET imaging with 15O-labeled water), gait (GaitRITE Systems), 

and balance (Mini-BESTest) during each of three stimulation conditions: DBS Off, unilateral D-STN DBS, 

and unilateral V-STN DBS. 

Methods 

Participants  

 Thirty-seven participants with idiopathic PD and previous implantation of bilateral STN DBS 

electrodes (electrode model 3389, Medtronic Activa System; Medtronic Inc., Minneapolis, Minnesota, 

USA) were recruited to participate in a two-day protocol.  All participants were diagnosed with PD based 

on established criteria [Hughes et al. 1992] and had undergone DBS surgery [Tabbal et al. 2007]  at least 

three months prior to enrollment to allow adequate time for optimization of clinical stimulation settings, 

confirmation of response to DBS, and resolution of micro-subthalamotomy effects.  Participants were 

selected based on our validated contact localization procedure [Videen et al. 2008] to ensure the 
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presence of electrode contacts within the D-STN and V-STN regions on the side of the brain contralateral 

to the more affected side of the body as determined by a Unified Parkinson Disease Rating Scale III 

(UPDRS-III) assessment in the off-medication and off-stimulation state.  Additionally, participants were 

free of other neurological diseases, confounding medications, or injuries affecting gait or balance.  All 

participants provided informed written consent and the study protocol was approved by the Human 

Research Protection Office (local internal review board) and the Radioactive Drug Research Committee 

of Washington University in St. Louis. 

Experimental Design 

Participants were evaluated on two separate days after overnight withdrawal (>8 hours) of 

antiparkinsonian medications.  The first day included PET scans using 15O-labeled water to measure 

qualitative rCBF while the participant was lying at rest with eyes closed and the second day included 

quantitative analyses of gait and balance.  Evaluations on both days were completed in each of three 

stimulation conditions, performed in a double-blind manner with order counterbalanced across 

participants: off stimulation (OFF), unilateral D-STN DBS, and unilateral V-STN DBS.  Unilateral 

stimulation was contralateral to the more affected side of the body as determined by a UPDRS-III 

assessment in the off-medication and off-stimulation state.  All testing occurred at least 42 minutes 

after changes in stimulator settings to evaluate participants near the steady-state of most motor 

symptoms [Temperli et al. 2003;Sturman et al. 2008]. 

Contact Localization and Stimulator Settings 

DBS electrode contacts were localized within the STN region using a previously validated 

method [Videen et al. 2008].  In brief, anatomic fiducials near the STN region were identified on pre-

surgical MR scans and the DBS electrode tip and four contacts were located on post-surgical CT scans.  

After co-registering the MR and CT scan, the anatomic fiducials were used to transform both images into 
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Mai atlas space [Mai et al. 2004] where the STN was identified and visualized with respect to the contact 

locations. 

To distinguish the effects of stimulation in the D-STN and V-STN regions, we used similar 

stimulation settings at both sites across all participants: monopolar electrode configuration, 185 Hz 

frequency, 2.5V amplitude, 60 µs pulse width.  These settings provide measurable motor benefits while 

minimizing current spread to adjacent anatomical regions [Butson and McIntyre 2005;Butson and 

McIntyre 2006], minimizing adverse side effects and reducing possible overlap in current spread from 

the two stimulation sites [Hershey et al. 2010].  Unilateral stimulation eliminated the confound of non-

symmetric electrode placement within the STN region. 

Neuroimaging 

Up to four PET scans were acquired in each stimulation condition using [15O]-water as described 

[Karimi et al. 2008].  Real-time monitoring, surface electrodes, and videotapes were used [Karimi et al. 

2008] to exclude scans with substantial movement or muscle activity from future analysis and thus 

control for movement confounds [Hershey and Mink 2006]. 

Emission data from the 40-second interval beginning with initial [15O]-water uptake in the brain 

were reconstructed [Karimi et al. 2008] and smoothed using a 3D Gaussian filter to a resolution of 

12mm full width at half maximum in all three dimensions.  Each smoothed emission image was co-

registered to the initial emission image, resliced to create an image in Talairach space, and globally 

normalized to a standard mean PET counts of 1000 [Talairach and Tournoux 1988;Woods et al. 1992]. 

After removing scans during which participants displayed visible movement or sustained EMG 

activity above baseline, the remaining 1-4 emission scans for each stimulation condition were globally 

normalized then averaged to create a mean condition image for each participant in each stimulation 
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condition.  At least one scan was required in each stimulation condition for inclusion of a participant in 

further analyses. 

Regions of Interest 

Qualitative cerebral blood flow responses to DBS were examined in seven a priori regions of 

interest (ROIs) (Table I) chosen based on known effects of STN DBS on cerebral blood flow [Hershey et 

al. 2003], basal ganglia circuitry and the neural control of gait.  The three subcortical ROIs (STN region, 

internal segment of the globus pallidus [GPi] and thalamus) were used to confirm that the stimulation 

paradigm produced quantifiable changes in rCBF while the two cortical regions (premotor cortex and 

supplementary motor area [SMA]) and two cerebellar regions (cerebellum anterior lobe hemispheres 

[CBAH] and vermis [CBAV]) were used to evaluate relationships between changes in rCBF, gait and 

balance.  The thalamus was defined by an anatomic mask; all other ROIs were defined by spheres placed 

based on coordinates previously identified as peaks of DBS-induced rCBF changes (STN, GPi, SMA, CBAH, 

and CBAV from Hershey et al. 2003; premotor cortex from Karimi et al. 2008) (Table I). 

Based on our hypothesis that gait and balance changes would relate to bilateral cortical and 

cerebellar rCBF changes, we did not differentiate responses ipsilateral and contralateral to the side of 

stimulation but instead averaged rCBF changes across sides in the five bilateral ROIs.  This approach is 

supported by previous evidence of bilateral rCBF effects of unilateral stimulation [Tanei et al. 2009;Arai 

et al. 2008], and we compared the ipsilateral and contralateral rCBF changes to confirm that bilateral 

averaging did not mask effects of unilateral stimulation. 

Motor Function Evaluations 

Evaluation of motor function during each stimulation condition included (1) administration of 

the UPDRS-III by a validated rater, (2) gait analysis using a 4.8m GAITRite walkway (CIR Systems, Sparta, 

NJ, USA) and (3) balance analysis using the Mini-Balance Evaluation Systems Test (Mini-BESTest).  
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Participants walked across the GAITRite walkway three times at their preferred pace; gait velocity, stride 

length and cadence were measured.  The Mini-BESTest is a 14-item clinical test of dynamic balance that 

rates patients on common tasks such as standing on one leg and rising from a chair; scores were 

reported out of 32 possible points [Franchignoni et al. 2010]. 

Statistical Analyses 

To assess the effects of the two unilateral stimulation conditions, pairwise comparisons for D-

STN vs OFF and also V-STN DBS vs OFF were conducted for each rCBF, gait and balance variable.  To 

determine whether the effects of stimulation differed by contact location, an additional pairwise 

comparison was conducted for each dependent variable, comparing changes induced by D-STN DBS (i.e., 

D-STN – OFF) to those induced V-STN DBS.  In all cases, paired samples t-tests were used for gait and 

rCBF data, Wilcoxon Signed Rank Tests were used for the non-parametric UPDRS-III and Mini-BESTest 

scores, and a Bonferroni correction was applied to correct for evaluation of multiple (4) ROIs or multiple 

(2) motor measures.  For all analyses, statistical significance was assessed as pcorrected < 0.05 and trend 

level was defined as p < 0.05 before correction. 

To assess the relationships between stimulation-induced changes in rCBF and changes in gait 

and balance, the percent change in rCBF induced by D-STN or V-STN DBS relative to OFF (e.g., 100*(D-

STN – OFF)/OFF) was correlated with the corresponding percent change in gait velocity and with the 

difference in Mini-BESTest relative to OFF (e.g., D-STN – OFF).  We used Spearman’s rho and raw score 

differences for the Mini-BESTest analyses to avoid exaggerating the effect size of small changes in 

balance measured by the 32 point ordinal scale.  These planned correlations were assessed with a 

Bonferroni correction for evaluation of multiple (4) ROIs posited to relate to gait and balance to control 

for possible Type I errors.  For any region in which stimulation-induced rCBF changes correlated at least 
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at trend level (puncorrected < 0.05) with stimulation-induced gait velocity changes, the rCBF relationships 

with changes in cadence and stride length were also evaluated. 

Results 

Seven of the 37 participants were excluded from analyses due to visible tremor or excessive 

EMG activity during all PET scans in one or more stimulation condition.  Demographic and clinical 

features of the 30 participants analyzed are listed in Table II.  The seven participants excluded due to 

movement had similar characteristics [mean (SD): age 59.9(6.3), disease duration 12.1(6.5), months 

since DBS surgery 20.4(20.3), off-state UPDRS-III score 33.1(13.1)].  During preliminary evaluations of the 

standardized stimulation settings, eight participants experienced untoward effects including 

contralateral paresthesias and jaw, arm and leg dystonias.  These effects occurred most often during 

testing of the V-STN contact and were resolved with reduction of voltages of both the D-STN and V-STN 

contacts to 2.3V (2 participants), 2.2V (1 participant), 2.1V (1 participant), and 1.8V (4 participants) for 

the duration of the study.  Figure 1 shows the D-STN and V-STN DBS contact locations and estimated 

spheres of current spread for these 30 participants.  All but four individuals had at least one contact 

between the stimulated dorsal and ventral contacts and the anatomic separation between dorsal and 

ventral contact coordinates was statistically significant in the three principle directions (paired t-tests, all 

t(29) > 13.9, all p < 0.001). 

Validation of stimulation paradigm 

We confirmed that unilateral stimulation at the selected contacts and settings affected motor 

performance and rCBF in subcortical regions near the stimulation site.  Indeed, UPDRS-III scores 

improved with both D-STN DBS (Wilcoxon signed rank test, Z = -4.01, p < 0.001) and V-STN DBS (Z = -

4.27, p < 0.001) compared to OFF (Figure 2A) and blood flow in several subcortical ROIs showed 

significant changes with stimulation: V-STN DBS increased rCBF relative to OFF in the STN region (paired 
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t-test, t(29) = 3.86, p = 0.001), GPi (t(29) = 3.75, p = 0.001), and thalamus (t(29) = 2.38, p = 0.024); D-STN 

DBS increased rCBF relative to OFF in the STN region (t(29) = 2.40, p = 0.023), GPi (t(29) = 2.91, p = 

0.007) but not in the thalamus (t(29) = 1.90, p = 0.068) (Figure 2B). 

To confirm that the decision to average bilateral rCBF responses did not mask unilateral effects, 

we compared rCBF responses ipsilateral and contralateral to the stimulation site in each of the 

bilaterally defined ROIs.  The lateralized responses were not consistently different in the bilaterally 

defined ROIs (paired t-tests, all p > 0.09 except for the thalamus rCBF response to D-STN DBS in which 

case the ipsilateral response was larger [p = 0.01] than the contralateral response). 

Effect of stimulation relative to OFF 

Motor Effects. After Bonferroni correction for evaluation of multiple (2) motor behaviors, the 

Mini-BESTest did not show significant improvements with either V-STN (Wilcoxon signed rank test, Z = -

2.22, pcorrected = 0.052) or D-STN DBS (Z = -1.82, pcorrected = 0.138) (Figure 2A).  Notably, the small 

differences in median Mini-BESTest score between conditions were due to a large variability in response 

across participants (Table III) with changes ranging from -5 to +7 during D-STN DBS and from -5 to +9 

during V-STN DBS.  Similarly, after correction there were no significant improvements in gait velocity 

with either D-STN DBS (paired t-test, t(29) = 2.32, pcorrected = 0.054) or V-STN DBS (t(29) = 1.25, pcorrected = 

0.44).  Since STN DBS is reported to preferentially affect stride length over cadence we secondarily 

evaluated the effects of stimulation on these two variables.  Stimulation of either STN region increased 

stride length (D-STN DBS: t(29) = 3.31, p = 0.002; V-STN DBS: t(29) = 2.37, p = 0.025) but neither 

stimulation condition produced a significant effect on cadence (D-STN DBS: t(29) = -0.014, p = 0.99; V-

STN DBS: t(29) = -1.01, p = 0.32) (Figure 2A).  To determine whether the effects of DBS on gait were 

more marked in individuals with worse OFF-state performance, we ranked patients by OFF-state gait 

velocity and evaluated those patients below the median.  Among this subset (n=15), both D-STN (paired 
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t-test, t(14) = 4.64, pcorrected < 0.002 ) and V-STN DBS (t(14) = 2.30, pcorrected = 0.08) influenced gait velocity 

more strongly than they did for the entire group. 

Regional Cerebral Blood Flow Effects.  None of the cortical or cerebellar ROIs had rCBF response 

levels significantly different from OFF after correction for multiple (4) ROIs although V-STN DBS tended 

to decrease CBAH rCBF relative to OFF (paired t-test, t(29) = -2.47, puncorrected = 0.02).  Overall, rCBF in deep 

brain structures increased with stimulation whereas rCBF in the cortical and cerebellar regions showed 

more variability in the response direction (Figure 2B). 

Comparison of the effects of dorsal and ventral STN DBS 

The DBS-induced changes in UPDRS-III, Mini-BESTest, gait velocity, stride length and cadence 

performance did not vary based on stimulation location (Wilcoxon signed rank tests for scores, all Z < -

0.34, puncorrected > 0.74; paired t-test for gait, all t(29) < 1.4, puncorrected > 0.18) (Figure 2A).  After Bonferroni 

correction, none of the ROIs investigated had significantly different rCBF responses with D-STN 

compared to V-STN DBS.  However V-STN DBS tended to increase rCBF responses in the premotor cortex 

(t = -2.20, puncorrected = 0.036) region more than D-STN DBS did relative to OFF (Figure 2B). 

Correlation analyses of rCBF with gait and balance 

Blood flow changes in the premotor cortex induced by V-STN DBS negatively correlated with the 

V-STN DBS-induced changes in gait velocity (r = –0.40, puncorrected = 0.03) (Figure 3A).  This relationship 

with changes in gait velocity was driven primarily by a negative correlation with changes in cadence (r = 

–0.42, puncorrected = 0.02) (Figure 3B) but not with changes in stride length (r = -0.30, puncorrected = 0.11).  

Blood flow changes in CBAH induced by D-STN DBS negatively correlated with the D-STN DBS-induced 

changes in gait velocity (r = -0.43, puncorrected = 0.02) (Figure 3C).  This relationship was driven by a 

negative correlation with cadence (r = -0.40, p = 0.03) (Figure 3D) but not significantly by stride length (r 

= -0.32, p = 0.08).  The correlations between DBS-induced changes in rCBF and DBS-induced changes in 
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gait velocity did not retain statistical significance after Bonferroni correction for evaluation of multiple 

(4) ROIs (adjusted alpha level = 0.013), and no other relationships were found between rCBF responses 

in the a priori ROIs and changes in gait or Mini-BESTest scores (Table IV). 

To determine whether the observed relationships between DBS-induced blood flow responses 

and gait velocity responses persisted when controlled for age, time since DBS surgery or PD duration, we 

evaluated partial correlations controlled for each factor.  The influence of each factor was evaluated 

separately due to the limitations of sample size (n=30).  The D-STN DBS-induced relationship between 

CBAH rCBF changes and gait velocity changes and the V-STN DBS-induced relationship between premotor 

rCBF changes and gait velocity changes both retained trend level significance (puncorrected < 0.05) when 

controlled for age (D-STN: r = -0.44, puncorrected = 0.02; V-STN: r = -0.40, puncorrected = 0.03) or PD duration (D-

STN: r = -0.39, puncorrected = 0.04; V-STN: r = -0.37, puncorrected = 0.046).  The D-STN DBS-induced relationship 

lost this statistical significance when controlled for time since surgery (r = -0.35, puncorrected = 0.06) but the 

V-STN DBS-induced relationship persisted (r = -0.42, puncorrected = 0.03). 

Discussion 

D-STN and V-STN do not differentially affect gait or balance, and are only minimally different in 

their effects on selected regions of blood flow.  However, the influence of STN DBS on gait may be 

mediated by different circuits depending on the site of STN region stimulation.  Specifically, V-STN DBS 

induced changes in gait velocity correlated with changes in rCBF in the premotor cortex whereas D-STN 

DBS induced changes in gait velocity correlated with changes in rCBF in CBAH.  In both cases, stimulation-

induced decreases in rCBF were associated with improvements in gait velocity. 

In agreement with several previous studies [Faist et al. 2001; Johnsen et al. 2009], we found that 

STN stimulation improved gait velocity primarily by increasing stride length while its influence on 
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cadence was variable.  In our study, these gait responses were similar during D-STN and V-STN DBS, 

supporting previous findings that location of active electrode contact in the STN region did not influence 

gait responses [McNeely et al. 2011].  Others report that D-STN and V-STN DBS have different effects on 

gait [Johnsen et al. 2011].  Our study differs from those reporting differential effects of D-STN and V-STN 

DBS in that: our comparisons were done within-subjects and a time delay between stimulation settings 

allowed participants to approach a steady-state before evaluation; uniform stimulation variables, 

selected to minimize overlap between the volumes of tissue activated by each stimulation site, were 

used for all participants; the localization process did not employ anatomical tracing of the STN on pre-

operative MRI or contact localization on post-operative MRI.  By eliminating several confounding 

variables, these features thus improved our chances of isolating the effects of stimulation and 

recognizing a difference between the effects of D-STN and V-STN DBS on gait and balance if such a 

difference exists. 

The relatively large between-subjects variability of gait responses to DBS enhanced our ability to 

detect a correlation between changes in gait velocity and DBS-induced changes in cortical and cerebellar 

blood flow.  Controlling for age, disease duration, and time since DBS surgery did not explain these 

relationships.  The relationships between gait velocity changes and rCBF changes in cortical and 

cerebellar regions support the notion that DBS mediates motor effects through basal ganglia-thalamo-

cortical and cerebello-thalamo-cortical circuits [McIntyre and Hahn 2010;Doya 2000] but do not exclude 

the possibility that the DBS-induced relationships are mediated by pathways other than the parallel 

loops described by traditional models.  For example, recent studies using viral tracers demonstrate an 

anatomic substrate for two-way communication between the basal ganglia and the cerebellar cortex 

[Bostan et al. 2010].  Similarly, a recent resting state functional connectivity study demonstrates strong 

functional but not necessarily direct anatomical connectivity between striatum and an extended 

brainstem region that includes thalamus, midbrain, pons and cerebellum [Hacker et al. 2012].  
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Alternatively, other pathways could mediate the observed DBS-induced rCBF and motor changes rather 

than or in addition to the traditional model of cortically-linked basal ganglia and cerebellar loops. 

Neither D-STN nor V-STN DBS at the selected settings produced a consistent directional effect 

on rCBF in the cortical or cerebellar regions examined.  However, patients whose rCBF decreased in the 

CBAH during D-STN DBS or in the premotor cortex during V-STN DBS tended to demonstrate the greatest 

stimulation-induced improvements in gait velocity.  While the rCBF changes in cortical and cerebellar 

regions likely reflect activity changes of distant input neurons through some of the networks discussed 

above, these changes also could be driven by changes in local interneuronal activity [Hershey and Mink 

2006].  Therefore, the association of decreases in rCBF with gait improvements may suggest that larger 

reductions in interneuronal activity relate to improvements in gait function. 

Our findings of distinct relationships between rCBF and gait responses to D-STN versus V-STN 

DBS suggest that while producing similar changes in motor function, the neuronal pathways by which 

DBS exerts these influences may vary with stimulation location.  These findings are consistent with non-

human primate data showing motor cortex projections to the dorsal STN region and premotor cortex 

projections to the ventromedial STN [Parent and Hazrati1995].  Notably, implanted electrode trajectory 

results in contact positions that differ not only in the dorsal-ventral dimension under investigation, but 

also in the anterior-posterior dimension; controlled sampling across all dimensions of the STN would be 

necessary for more detailed functional mapping.  A recent study using diffusion-weighted imaging to 

evaluate STN connectivity in 12 healthy adults demonstrated in-vivo the presence of three sub-regions 

within the human STN distinguished by cortical and subcortical connections [Lambert et al. 2012a].  

Although the specific delineations of the STN sub-regions in these studies are not directly comparable, 

the non-human primate anatomy, combined with the evidence of in-vivo segregation in humans, 
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supports our finding that V-STN but not D-STN DBS induced a strong relationship between changes in 

premotor cortex rCBF and changes in gait. 

In this study, motor changes during D-STN DBS did not correlate with changes in SMA or 

premotor cortex rCBF, but rather these changes correlated to rCBF changes in CBAH.  As our analyses 

were limited to a priori regions of interest, we cannot exclude involvement of other brain regions or 

circuits.  Whole-brain analyses of rCBF changes may be useful for identifying additional regions involved 

but will require more participants given the reduced magnitude of stimulation voltage that we chose to 

help distinguish effects of D-STN and V-STN DBS.  Anatomic connections between STN and CBAH that may 

occur via pedunculopontine nucleus [Bostan and Strick 2010] may mediate the relationship between 

gait changes and CBAH rCBF changes during D-STN DBS.  Alternatively, this relationship may reflect 

stimulation of cerebellothalamic fibers passing by the STN [Gallay et al. 2008]or functional brain 

networks involved in motor control, altered in Parkinson disease, and potentially affected by deep brain 

stimulation [Hacker et al. 2012;Wu et al. 2009;Poston and Eidelberg 2011;McIntyre and Hahn2010].  

One resting-state functional connectivity study demonstrated topographically organized functional 

coupling between the cerebellum and specific cortical areas including the premotor, somatomotor, and 

association cortices [Buckner et al. 2011].  The CBAH region we investigated may be functionally coupled 

with a specific cortical region in a basal ganglia-thalamo-cortical circuit influenced preferentially during 

D-STN DBS compared to V-STN DBS.  Such functional coupling could explain the observed stimulation-

location dependency of the relationship between DBS-induced changes in CBAH rCBF and gait changes.  

Future resting-state fMRI studies may test this hypothesis by investigating resting-state networks from 

CBAH and premotor cortex. 

Our finding of rCBF-gait relationships dependent on stimulation location also provides insight 

into the neural control of gait.  Stimulation of different STN regions and consequent activation of distinct 
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circuits produces similar changes in gait but may do so by disparate mechanisms.  As gait involves 

integration and coordination of input from multiple sensory systems including the visual, vestibular, and 

somatosensory systems, DBS could influence gait by altering any of these systems.  Indeed, several 

studies have noted the influence of DBS on behaviors such as eye movements [Fawcett et al. 

2010;Lohnes and Earhart 2012] and posture regulation [Guehl et al. 2006].  The relevant functional 

organization of STN remains unknown, but DBS-induced gait changes may be mediated by modification 

of motor and cognitive behaviors that could be differentially influenced by stimulation location.  Thus, 

the optimal DBS target for improving gait may be less regionally specific than for cognitive functions 

such as response inhibition [Hershey et al. 2010].  An alternative interpretation is that the relationship 

between cerebellar responses and gait changes represents compensation for dysfunction in the basal 

ganglia system.  Finally, during stimulation at clinically-optimized settings (which typically have voltages 

higher than our study settings) DBS may spread farther and have greater effects on nearby fiber tracts 

including the zona incerta, Fields of Forel, and internal capsule [Kuncel and Grill 2004]. 

An important caveat of this study is that stimulation was provided unilaterally at settings distinct 

from those optimized for clinical effectiveness.  The results of this study were not intended to directly 

suggest changes in practical patient management but rather, the selected settings permitted us to 

differentially stimulate the dorsal versus ventral STN regions while avoiding the potential confound of 

non-symmetric lead placement and overlapping current spheres.  Our decision to evaluate axial motor 

symptoms during unilateral stimulation is supported by previous studies demonstrating axial effects 

from unilateral stimulation [Germano et al. 2004;Kelly et al. 2010] and similar effects on gait but with a 

smaller magnitude compared to bilateral stimulation [Bastian et al. 2003].  Indeed the effects on gait in 

this study were more modest than those reported in response to clinically optimized DBS [Bastian et al. 

2003].  The influence of unilateral STN DBS on rCBF is not as well established, but accumulating evidence 

indicates that unilateral DBS produces bilateral rCBF responses [Tanei et al. 2009; Arai et al. 2008].  



Perlmutter     17 
 

 
 

Bilateral connections of basal ganglia nuclei shown by anatomic studies [Marani et al. 2008;Parent and 

Hazrati1995] likely account for the observed contralateral effects.  Functional connectivity studies 

[Palmer et al. 2010] and electrophysiological recordings from contralateral STN during unilateral STN 

DBS in rats [Shi et al. 2006] and humans [Liu et al. 2002;Walker et al. 2011] further support this notion. 

We demonstrated that DBS-induced bilateral rCBF changes in selected cortical and cerebellar 

regions correlate with changes in motor behaviors and that these relationships are dependent on 

stimulation location.  We observed no consistent difference between DBS-induced rCBF changes 

ipsilateral and contralateral to stimulation thereby adding to the growing body of evidence of bilateral 

connections of basal ganglia nuclei.  Additional studies examining the effects of unilateral versus 

bilateral stimulation on cerebral activity and further evaluating functional organization of the STN are 

warranted. 
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Figure Captions 

 

Figure 1.  Distribution of dorsal (green) and ventral (purple) contacts in the STN region (red outline) for the 

sample (N=30).  A 2mm radius sphere is centered on each study contact.  Contacts on left side of the brain 

are flipped across x-axis for display.  Color gradient denotes number of contacts within 2mm of each voxel. 

 

Figure 2.  Average change (± SEM) in motor function (A) and regional cerebral blood flow (rCBF) (B) 

during stimulation of dorsal (D-STN) and ventral (V-STN) subthalamic nucleus regions measured relative 

to no stimulation (OFF).  UPDRS-III and Mini-BESTest evaluations are shown as score changes; gait and 

rCBF measures are shown as percent changes.  N=30 except for Mini-BESTest as two individuals did not 

complete this evaluation.  STN, subthalamic nucleus; GPi, internal segment of the globus pallidus; CBAH, 

hemispheres of the anterior lobe of the cerebellum; CBAV, vermis of the anterior lobe of the cerebellum; 

SMA, supplementary motor area.  * Measure during STN DBS is significantly different from OFF after 

Bonferroni corrections described in text.  Note:  Removal of statistical outliers beyond 3 standard 

deviations from the mean does not eliminate statistical significance of any comparisons. 

 

Figure 3.  DBS induced changes in gait related to changes in regional cerebral blood flow (rCBF).  

Stimulation of the ventral STN region (V-STN) induced changes in premotor cortex rCBF negatively 

correlated with gait velocity (A), specifically cadence (B).  Stimulation of the dorsal STN region (D-STN) 

induced changes in rCBF in the hemispheres of the anterior lobe of the cerebellum (CBAH) negatively 

correlated with changes in forward walking velocity (C) and more specifically, cadence (D).  Statistical 

outliers beyond three standard deviations from the mean are marked with asterisks.  Removal of these 

data eliminates the correlation in Figure D (r = -0.09, p = 0.66) but does not significantly change 

relationships in A, B, or C. 
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Figure 3 

  



Perlmutter     27 
 

 
 

Table I  Radius and Talairach Coordinates of Spherical Regions of Interest 

  radius (mm) x y z 

Premotor cortex 5 -43 (L), +45 (R) 3 42 

Supplementary motor area (SMA) 6 0 -16 50 

Cerebellum – anterior lobe, hemispheres (CBAH) 5 ±14 -38 -16 

Cerebellum – anterior lobe, vermis (CBAV) 5 0 -60 -8 

Subthalamic nucleus (STN) 5 ±11 -14 -4 

Internal segment of globus pallidus (GPi) 5 ±16 -6 -1 

Thalamus (bilateral thalami defined by an anatomic mask) 
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Table II  Participant Demographics and Stimulation Characteristics 

 Mean (SD)   

Demographics   

Gender 19 male, 11 female 

Age (years) 64.0 (7.7) 

Disease duration (years) 14.3 (5.6) 

Time since DBS surgery (months) 22.4 (20.8) 

UPDRS-III score (off medication, off DBS) 35.5 (10.5) 

  Clinically optimized stimulator settings    

Voltage (V) 2.8 (0.7) 

Pulse width (µs) 62.1 (7.7) 

Frequency (Hz) 185 (0.0) 

  Study stimulation characteristics   

Side of stimulation 14 left, 16 right 

Subjects with clinical contact as study contact 9 dorsal, 8 ventral 

Voltage (V) 2.4 (0.2) 

Pulse Width (µs) 60 (0.0) 

Frequency (Hz) 185 (0.0) 

Dorsal x (absolute value) 12.7 (1.0) 

Dorsal y -17.6 (1.5) 

Dorsal z -1.6 (0.7) 

Ventral x (absolute value) 11.8 (1.0) 

Ventral y -19.5 (1.3) 

Ventral z -5.3 (0.8) 

Note.  Clinically optimized settings are reported for the clinical contact 

on same side of brain as study stimulation.  Average x, y and z position 

of the study contacts are reported in Mai atlas coordinates. 
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Table III  Variability of Motor Responses to Dorsal and Ventral STN DBS 

 

D-STN DBS vs OFF  V-STN DBS vs OFF 

 

Mean 

Percent 

Change 

Number 

(Percent) of 

Patients 

Improved 

 

Mean 

percent 

Change 

Number 

(Percent) 

of Patients 

Improved 

UPDRS-IIIa -6.5 25 (83%)  -6.5 24 (80%) 

Mini-BESTesta 0.5 14 (50%)  1 16 (57%) 

Gait velocity 19 19 (63%)  16 15 (50%) 

Gait stride length 16 22 (73%)  16 17 (57%) 

Gait cadence 2 15 (50%)  0 11 (37%) 

Note.  Improvements are defined as negative changes in UPDRS score and by 

positive changes in all other variables. 
aMedian change in score is reported instead of mean percent change 
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Table IV  Correlation coefficients (uncorrected significance level) 

of all investigated correlations between DBS-induced motor 

responses and rCBF responses in a priori regions of interest. 

 Premotor SMA CBAH CBAV 

     

 Correlations between D-STN DBS-induced 

motor and rCBF responses 

Gait velocity r = –0.27 

(p = 0.15) 

r = 0.15 

(p = 0.45) 

r = –0.43 

(p = 0.02) 

r = 0.28 

(p=0.88) 

Mini-BESTest rs = –0.23 

(p = 0.23) 

rs = 0.21 

(p = 0.28) 

rs = 0.11 

(p = 0.56) 

rs = 0.11 

(p = 0.56) 

  

 Correlations between V-STN DBS-induced 

motor and rCBF responses 

Gait velocity r = –0.40 

(p = 0.03) 

r = –0.03 

(p = 0.89) 

r = 0.10 

(p = 0.60) 

r = 0.05 

(p = 0.81) 

Mini-BESTest rs=-0.15 

(p=0.43) 

rs=0.12 

(p=0.55) 

rs=0.12 

(p=0.55) 

rs=0.20 

(p=0.32) 

Note.  Correlations with p < 0.05 are in bold; no correlations are 

significant after Bonferroni correction for evaluation of multiple 

(4) a priori regions of interest (adjusted alpha level of 0.013). 
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