393 research outputs found

    Endothelial cyclooxygenase-1 paradoxically drives local vasoconstriction and atherogenesis despite underpinning prostacyclin generation

    Get PDF
    Endothelial cyclooxygenase-1–derived prostanoids, including prostacyclin, have clear cardioprotective roles associated with their anti-thrombotic potential but have also been suggested to have paradoxical pathological activities within arteries. To date it has not been possible to test the importance of this because no models have been available that separate vascular cyclooxygenase-1 products from those generated elsewhere. Here, we have used unique endothelial-specific cyclooxygenase-1 knockout mice to show that endothelial cyclooxygenase-1 produces both protective and pathological products. Functionally, however, the overall effect of these was to drive pathological responses in the context of both vasoconstriction in vitro and the development of atherosclerosis and vascular inflammation in vivo. These data provide the first demonstration of a pathological role for the vascular cyclooxygenase-1 pathway, highlighting its potential as a therapeutic target. They also emphasize that, across biology, the role of prostanoids is not always predictable due to unique balances of context, products, and receptors

    Reversible Suppression of Cyclooxygenase 2 (COX-2) Expression In Vivo by Inducible RNA Interference

    Get PDF
    Prostaglandin-endoperoxide synthase 2 (PTGS2), also known as cyclooxygenase 2 (COX-2), plays a critical role in many normal physiological functions and modulates a variety of pathological conditions. The ability to turn endogenous COX-2 on and off in a reversible fashion, at specific times and in specific cell types, would be a powerful tool in determining its role in many contexts. To achieve this goal, we took advantage of a recently developed RNA interference system in mice. An shRNA targeting the Cox2 mRNA 3'untranslated region was inserted into a microRNA expression cassette, under the control of a tetracycline response element (TRE) promoter. Transgenic mice containing the COX-2-shRNA were crossed with mice encoding a CAG promoter-driven reverse tetracycline transactivator, which activates the TRE promoter in the presence of tetracycline/doxycycline. To facilitate testing the system, we generated a knockin reporter mouse in which the firefly luciferase gene replaces the Cox2 coding region. Cox2 promoter activation in cultured cells from triple transgenic mice containing the luciferase allele, the shRNA and the transactivator transgene resulted in robust luciferase and COX-2 expression that was reversibly down-regulated by doxycycline administration. In vivo, using a skin inflammation-model, both luciferase and COX-2 expression were inhibited over 80% in mice that received doxycycline in their diet, leading to a significant reduction of infiltrating leukocytes. In summary, using inducible RNA interference to target COX-2 expression, we demonstrate potent, reversible Cox2 gene silencing in vivo. This system should provide a valuable tool to analyze cell type-specific roles for COX-2

    Widening the prostacyclin paradigm: tissue fibroblasts are a critical site of production and anti-thrombotic protection

    Get PDF
    BACKGROUND: Prostacyclin is a fundamental signaling pathway traditionally associated with the cardiovascular system and protection against thrombosis but which also has regulatory functions in fibrosis, proliferation, and immunity. Prevailing dogma states that prostacyclin is principally derived from vascular endothelium, although it is known that other cells can also synthesize it. However, the role of nonendothelial sources in prostacyclin production has not been systematically evaluated resulting in an underappreciation of their importance relative to better characterized endothelial sources. METHODS: To address this, we have used novel endothelial cell–specific and fibroblast-specific COX (cyclo-oxygenase) and prostacyclin synthase knockout mice and cells freshly isolated from mouse and human lung tissue. We have assessed prostacyclin release by immunoassay and thrombosis in vivo using an FeCl3-induced carotid artery injury model. RESULTS: We found that in arteries, endothelial cells are the main source of prostacyclin but that in the lung, and other tissues, prostacyclin production occurs largely independently of endothelial and vascular smooth muscle cells. Instead, in mouse and human lung, prostacyclin production was strongly associated with fibroblasts. By comparison, microvascular endothelial cells from the lung showed weak prostacyclin synthetic capacity compared with those isolated from large arteries. Prostacyclin derived from fibroblasts and other nonendothelial sources was seen to contribute to antithrombotic protection. CONCLUSIONS: These observations define a new paradigm in prostacyclin biology in which fibroblast/nonendothelial-derived prostacyclin works in parallel with endothelium-derived prostanoids to control thrombotic risk and potentially a broad range of other biology. Although generation of prostacyclin by fibroblasts has been shown previously, the scale and systemic activity was not tested and unappreciated. As such, this represents a basic change in our understanding and may provide new insight into how diseases of the lung result in cardiovascular risk

    Inverse Relationship between PSA and IL-8 in Prostate Cancer: An Insight into a NF-κB-Mediated Mechanism

    Get PDF
    Background: Prostate specific antigen (PSA) is traditionally used as an indicator for the presence of prostate cancer (PCa) and radiotherapy is generally used to treat inoperable and locally advanced PCa. However, how cellular PSA level is associated with sensitivity of PCa to radiotherapy is unknown. The previous finding that the RelB-based NF-kB alternative pathway differentially regulates PSA and interleukin-8 (IL-8) in aggressive PCa has directed our attention to the role of RelB in the response of PCa to radiotherapy. Methodology/Principal Findings: RelB and its targets PSA and IL-8 in PCa cells were manipulated by ectopic expression in PCa cells with a low endogenous level of RelB (LNCaP) and by RNAi-based knock-down in PCa cells with a high constitutive level of RelB (PC3). The effects of RelB, PSA and IL-8 on the response of PCa to radiation treatment were examined in vitro and in xenograft tumors. RelB regulates PSA and IL-8 in an inverse manner. When the cellular levels of PSA and IL-8 were directly modulated by genetic manipulations or by the addition of recombinant proteins, the results demonstrate that upregulation of IL-8 enhanced radioresistance of PCa cells and concurrently down-regulated PSA. In contrast, up-regulation of PSA resulted in reduced radioresistance with concurrent down-regulation of IL-8. Conclusion/Significance: RelB plays a critical role in the response of PCa to radiotherapy and the inverse expression of IL-8 and PSA. The results identify a previously unrecognized relationship between IL-8 and PSA in the response of PCa cells t

    Potential use of COX-2–aromatase inhibitor combinations in breast cancer

    Get PDF
    Cyclooxygenase-2 (COX-2) is overexpressed in several epithelial tumours, including breast cancer. Cyclooxygenase-2-positive tumours tend to be larger, higher grade, node-positive and HER-2/neu-positive. High COX-2 expression is associated with poor prognosis. Cyclooxygenase-2 inhibition reduces the incidence of tumours in animal models, inhibits the development of invasive cancer in colorectal cancer and reduces the frequency of polyps in familial adenomatous polyposis (FAP). These effects may be as a result of increased apoptosis, reduced angiogenesis and/or proliferation. Studies of COX-2 inhibitors in breast cancer are underway both alone and in combination with other agents. There is evidence to suggest that combining COX-2 inhibitors with aromatase inhibitors, growth factor receptor blockers, or chemo- or radiotherapy may be particularly effective. Preliminary results from combination therapy with celecoxib and exemestane in postmenopausal women with advanced breast cancer showed that the combination increased the time to recurrence. Up to 80% of ductal carcinomas in situ (DCISs) express COX-2, therefore COX-2 inhibition may be of particular use in this situation. Cyclooxygenase-2 expression correlates strongly with expression of HER-2/neu. As aromatase inhibitors appear particularly effective in patients with HER-2/neu-positive tumours, the combination of aromatase inhibitors and COX-2 inhibitors may be particularly useful in both DCIS and invasive cancer

    Increased Lysis of Stem Cells but Not Their Differentiated Cells by Natural Killer Cells; De-Differentiation or Reprogramming Activates NK Cells

    Get PDF
    The aims of this study are to demonstrate the increased lysis of stem cells but not their differentiated counterparts by the NK cells and to determine whether disturbance in cell differentiation is a cause for increased sensitivity to NK cell mediated cytotoxicity. Increased cytotoxicity and augmented secretion of IFN-γ were both observed when PBMCs or NK cells were co-incubated with primary UCLA oral squamous carcinoma stem cells (UCLA-OSCSCs) when compared to differentiated UCLA oral squamous carcinoma cells (UCLA-OSCCs). In addition, human embryonic stem cells (hESCs) were also lysed greatly by the NK cells. Moreover, NK cells were found to lyse human Mesenchymal Stem Cells (hMSCs), human dental pulp stem cells (hDPSCs) and human induced pluripotent stem cells (hiPSCs) significantly more than their differentiated counterparts or parental lines from which they were derived. It was also found that inhibition of differentiation or reversion of cells to a less-differentiated phenotype by blocking NFκB or targeted knock down of COX2 in monocytes significantly augmented NK cell cytotoxicity and secretion of IFN-γ. Taken together, these results suggest that stem cells are significant targets of the NK cell cytotoxicity. However, to support differentiation of a subset of tumor or healthy untransformed primary stem cells, NK cells may be required to lyse a number of stem cells and/or those which are either defective or incapable of full differentiation in order to lose their cytotoxic function and gain the ability to secrete cytokines (split anergy). Therefore, patients with cancer may benefit from repeated allogeneic NK cell transplantation for specific elimination of cancer stem cells
    • …
    corecore