3,344 research outputs found
Identification of an interchromosomal compartment by polymerization of nuclear-targeted vimentin
A number of structural and functional subnuclear compartments have been described, including regions
exclusive of chromosomes previously hypothesized to form
a reactive nuclear space. We have now explored this
accessible nuclear space and interchromosomal
nucleoplasmic domains experimentally using Xenopus
vimentin engineered to contain a nuclear localization signal
(NLS-vimentin). In stably transfected human cells
incubated at 37°C, the NLS-vimentin formed a restricted
number of intranuclear speckles. At 28°C, the optimal
temperature for assembly of the amphibian protein, NLSvimentin
progressively extended with time out from the
speckles into strictly orientated intranuclear filamentous
arrays. This enabled us to observe the development of a
system of interconnecting channel-like areas. Quantitative
analysis based on 3-D imaging microscopy revealed that
these arrays were localized almost exclusively outside of
chromosome territories. During mitosis the filaments
disassembled and dispersed throughout the cytoplasm,
while in anaphase-telophase the vimentin was recruited
back into the nucleus and reassembled into filaments at the
chromosome surfaces, in distributions virtually identical to
those observed in the previous interphase. The filaments
also colocalized with specific nuclear RNAs, coiled bodies
and PML bodies, all situated outside of chromosome
territories, thereby interlinking these structures. This
strongly implies that these nuclear entities coexist in the
same interconnected nuclear compartment. The
assembling NLS-vimentin is restricted to and can be used
to delineate, at least in part, the formerly proposed
reticular interchromosomal domain compartment (ICD).
The properties of NLS-vimentin make it an excellent tool
for performing structural and functional studies on this
compartment
Time-domain numerical simulations of multiple scattering to extract elastic effective wavenumbers
Elastic wave propagation is studied in a heterogeneous 2-D medium consisting
of an elastic matrix containing randomly distributed circular elastic
inclusions. The aim of this study is to determine the effective wavenumbers
when the incident wavelength is similar to the radius of the inclusions. A
purely numerical methodology is presented, with which the limitations usually
associated with low scatterer concentrations can be avoided. The elastodynamic
equations are integrated by a fourth-order time-domain numerical scheme. An
immersed interface method is used to accurately discretize the interfaces on a
Cartesian grid. The effective field is extracted from the simulated data, and
signal-processing tools are used to obtain the complex effective wavenumbers.
The numerical reference solution thus-obtained can be used to check the
validity of multiple scattering analytical models. The method is applied to the
case of concrete. A parametric study is performed on longitudinal and
transverse incident plane waves at various scatterers concentrations. The phase
velocities and attenuations determined numerically are compared with
predictions obtained with multiple scattering models, such as the Independent
Scattering Approximation model, the Waterman-Truell model, and the more recent
Conoir-Norris model.Comment: Waves in Random and Complex Media (2012) XX
Giant half-cycle attosecond pulses
Half-cycle picosecond pulses have been produced from thin photo-conductors,
when applying an electric field across the surface and switching on conduction
by a short laser pulse. Then the transverse current in the wafer plane emits
half-cycle pulses in normal direction, and pulses of 500 fs duration and 1e6
V/m peak electric field have been observed. Here we show that single half-cycle
pulses of 50 as duration and up to 1e13 V/m can be produced when irradiating a
double foil target by intense few-cycle laser pulses. Focused onto an
ultra-thin foil, all electrons are blown out, forming a uniform sheet of
relativistic electrons. A second layer, placed at some distance behind,
reflects the drive beam, but lets electrons pass straight. Under oblique
incidence, beam reflection provides the transverse current, which emits intense
half-cycle pulses. Such a pulse may completely ionize even heavier atoms. New
types of attosecond pump-probe experiments will become possible.Comment: 5 pages, 4 figures, to be presented at LEI2011-Light at Extreme
Intensities and China-Germany Symposium on Laser Acceleratio
A comparative study of Tam3 and Ac transposition in transgenic tobacco and petunia plants
Transposition of the Anthirrinum majus Tam3 element and the Zea mays Ac element has been monitored in petunia and tobacco plants. Plant vectors were constructed with the transposable elements cloned into the leader sequence of a marker gene. Agrobacterium tumefaciens-mediated leaf disc transformation was used to introduce the transposable element constructs into plant cells. In transgenic plants, excision of the transposable element restores gene expression and results in a clearly distinguishable phenotype. Based on restored expression of the hygromycin phosphotransferase II (HPTII) gene, we established that Tam3 excises in 30% of the transformed petunia plants and in 60% of the transformed tobacco plants. Ac excises from the HPTII gene with comparable frequencies (30%) in both plant species. When the β-glucuronidase (GUS) gene was used to detect transposition of Tam3, a significantly lower excision frequency (13%) was found in both plant species. It could be shown that deletion of parts of the transposable elements Tam3 and Ac, removing either one of the terminal inverted repeats (TIR) or part of the presumptive transposase coding region, abolished the excision from the marker genes. This demonstrates that excision of the transposable element Tam3 in heterologous plant species, as documented for the autonomous element Ac, also depends on both properties. Southern blot hybridization shows the expected excision pattern and the reintegration of Tam3 and Ac elements into the genome of tobacco plants.
The limit of N=(2,2) superconformal minimal models
The limit of families of two-dimensional conformal field theories has
recently attracted attention in the context of AdS/CFT dualities. In our work
we analyse the limit of N=(2,2) superconformal minimal models when the central
charge approaches c=3. The limiting theory is a non-rational N=(2,2)
superconformal theory, in which there is a continuum of chiral primary fields.
We determine the spectrum of the theory, the three-point functions on the
sphere, and the disc one-point functions.Comment: 37 pages, 3 figures; v2: minor corrections in section 5.3, version to
be published in JHE
Folate catabolites in spot urine as non-invasive biomarkers of folate status during habitual intake and folic acid supplementation.
Folate status, as reflected by red blood cell (RCF) and plasma folates (PF), is related to health and disease risk. Folate degradation products para-aminobenzoylglutamate (pABG) and para-acetamidobenzoylglutamate (apABG) in 24 hour urine have recently been shown to correlate with blood folate.
Since blood sampling and collection of 24 hour urine are cumbersome, we investigated whether the determination of urinary folate catabolites in fasted spot urine is a suitable non-invasive biomarker for folate status in subjects before and during folic acid supplementation.
Immediate effects of oral folic acid bolus intake on urinary folate catabolites were assessed in a short-term pre-study. In the main study we included 53 healthy men. Of these, 29 were selected for a 12 week folic acid supplementation (400 µg). Blood, 24 hour and spot urine were collected at baseline and after 6 and 12 weeks and PF, RCF, urinary apABG and pABG were determined.
Intake of a 400 µg folic acid bolus resulted in immediate increase of urinary catabolites. In the main study pABG and apABG concentrations in spot urine correlated well with their excretion in 24 hour urine. In healthy men consuming habitual diet, pABG showed closer correlation with PF (rs = 0.676) and RCF (rs = 0.649) than apABG (rs = 0.264, ns and 0.543). Supplementation led to significantly increased folate in plasma and red cells as well as elevated urinary folate catabolites, while only pABG correlated significantly with PF (rs = 0.574) after 12 weeks.
Quantification of folate catabolites in fasted spot urine seems suitable as a non-invasive alternative to blood or 24 hour urine analysis for evaluation of folate status in populations consuming habitual diet. In non-steady-state conditions (folic acid supplementation) correlations between folate marker (RCF, PF, urinary catabolites) decrease due to differing kinetics
Tactical Voting in Plurality Elections
How often will elections end in landslides? What is the probability for a
head-to-head race? Analyzing ballot results from several large countries rather
anomalous and yet unexplained distributions have been observed. We identify
tactical voting as the driving ingredient for the anomalies and introduce a
model to study its effect on plurality elections, characterized by the relative
strength of the feedback from polls and the pairwise interaction between
individuals in the society. With this model it becomes possible to explain the
polarization of votes between two candidates, understand the small margin of
victories frequently observed for different elections, and analyze the polls'
impact in American, Canadian, and Brazilian ballots. Moreover, the model
reproduces, quantitatively, the distribution of votes obtained in the Brazilian
mayor elections with two, three, and four candidates.Comment: 7 pages, 4 figure
Gravitational physics with antimatter
The production of low-energy antimatter provides unique opportunities to
search for new physics in an unexplored regime. Testing gravitational
interactions with antimatter is one such opportunity. Here a scenario based on
Lorentz and CPT violation in the Standard- Model Extension is considered in
which anomalous gravitational effects in antimatter could arise.Comment: 5 pages, presented at the International Conference on Exotic Atoms
(EXA 2008) and the 9th International Conference on Low Energy Antiproton
Physics (LEAP 2008), Vienna, Austria, September 200
How the Mitoprotein-Induced Stress Response Safeguards the Cytosol: A Unified View
Mitochondrial and cytosolic proteostasis are of central relevance for cellular stress resistance and organismal health. Recently, a number of individual cellular programs were described that counter the fatal consequences of mitochondrial dysfunction. These programs remove arrested import intermediates from mitochondrial protein translocases, stabilize protein homeostasis within mitochondria, and, in particular, increase the levels and activity of chaperones and the proteasome system in the cytosol. Here, we describe the different responses to mitochondrial perturbation and propose to unify the seemingly distinct mitochondrial-cytosolic quality control mechanisms into a single network, the mitoprotein-induced stress response. This holistic view places mitochondrial biogenesis at a central position of the cellular proteostasis network, emphasizing the importance of mitochondrial protein import processes for development, reproduction, and ageing
- …
