A number of structural and functional subnuclear compartments have been described, including regions
exclusive of chromosomes previously hypothesized to form
a reactive nuclear space. We have now explored this
accessible nuclear space and interchromosomal
nucleoplasmic domains experimentally using Xenopus
vimentin engineered to contain a nuclear localization signal
(NLS-vimentin). In stably transfected human cells
incubated at 37°C, the NLS-vimentin formed a restricted
number of intranuclear speckles. At 28°C, the optimal
temperature for assembly of the amphibian protein, NLSvimentin
progressively extended with time out from the
speckles into strictly orientated intranuclear filamentous
arrays. This enabled us to observe the development of a
system of interconnecting channel-like areas. Quantitative
analysis based on 3-D imaging microscopy revealed that
these arrays were localized almost exclusively outside of
chromosome territories. During mitosis the filaments
disassembled and dispersed throughout the cytoplasm,
while in anaphase-telophase the vimentin was recruited
back into the nucleus and reassembled into filaments at the
chromosome surfaces, in distributions virtually identical to
those observed in the previous interphase. The filaments
also colocalized with specific nuclear RNAs, coiled bodies
and PML bodies, all situated outside of chromosome
territories, thereby interlinking these structures. This
strongly implies that these nuclear entities coexist in the
same interconnected nuclear compartment. The
assembling NLS-vimentin is restricted to and can be used
to delineate, at least in part, the formerly proposed
reticular interchromosomal domain compartment (ICD).
The properties of NLS-vimentin make it an excellent tool
for performing structural and functional studies on this
compartment